A monotone principle of fixed points
Author:
M. R. Tasković
Journal:
Proc. Amer. Math. Soc. 94 (1985), 427432
MSC:
Primary 54H25; Secondary 54C60
MathSciNet review:
787887
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we formulate a new principle of fixed points, and we call it "monotone principle of fixed points". A fixed point theorem for setvalued mappings in a complete metric space and some theorems on fixed points in arbitrary topological spaces are presented in this paper. Also, we describe a class of conditions sufficient for the existence of a fixed point which generalize several known results. We introduce the concept of a contraction principle and CSconvergence. With such an extension, a very general fixed point theorem is obtained to include a recent result of the author, which contains, as special cases, some results of J. Dugundji and A. Granas, F. Browder, D. W. Boyd and J. S. Wong, J. Caristi, T. L. Hicks and B. E. Rhoades, B. Fisher, W. Kirk and M. Krasnoselskij.
 [1]
D.
W. Boyd and J.
S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464. MR 0239559
(39 #916), http://dx.doi.org/10.1090/S00029939196902395599
 [2]
Felix
E. Browder, On the convergence of successive approximations for
nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A
71=Indag. Math. 30 (1968), 27–35. MR 0230180
(37 #5743)
 [3]
James
Caristi, Fixed point theorems for mappings
satisfying inwardness conditions, Trans. Amer.
Math. Soc. 215
(1976), 241–251. MR 0394329
(52 #15132), http://dx.doi.org/10.1090/S00029947197603943294
 [4]
J.
Dugundji and A.
Granas, Weakly contractive maps and elementary domain invariance
theorem, Bull. Soc. Math. Grèce (N.S.) 19
(1978), no. 1, 141–151. MR 528510
(80d:54035)
 [5]
Brian
Fisher, Results on fixed points, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 25 (1977),
no. 12, 1253–1256 (English, with Russian summary). MR 0515244
(58 #24224)
 [6]
T.
L. Hicks and B.
E. Rhoades, A Banach type fixedpoint theorem, Math. Japon.
24 (1979/80), no. 3, 327–330. MR 550217
(80i:54055)
 [7]
W.
A. Kirk, Caristi’s fixed point theorem and metric
convexity, Colloq. Math. 36 (1976), no. 1,
81–86. MR
0436111 (55 #9061)
 [8]
M. Krasnoselskij et al., Approximate solution of operator equations, WoltersNoordhoff, Groningen, p. 172.
 [9]
Milan
R. Tasković, Some results in the fixed point theory.
II, Publ. Inst. Math. (Beograd) (N.S.) 27(41) (1980),
249–258. MR
621957 (82f:54082)
 [10]
, Some theorems on fixed point and its applications, Ann. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat. 24 (1984), 151162.
 [1]
 D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458464. MR 0239559 (39:916)
 [2]
 F. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 2735. MR 0230180 (37:5743)
 [3]
 J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241251. MR 0394329 (52:15132)
 [4]
 J. Dugundji and A. Granas, Weakly contractive maps and elementary domain invariance theorem, Bull. Greek Math. Soc. 19 (1978), 141151. MR 528510 (80d:54035)
 [5]
 B. Fisher, Results on fixed points, Bull. Acad. Polon. Sci. 25 (1977), 12531256. MR 0515244 (58:24224)
 [6]
 T. L. Hicks and B. E. Rhoades, A Banach type fixed point theorem, Math. Japon. 24 (1979), 327330. MR 550217 (80i:54055)
 [7]
 W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 8186. MR 0436111 (55:9061)
 [8]
 M. Krasnoselskij et al., Approximate solution of operator equations, WoltersNoordhoff, Groningen, p. 172.
 [9]
 M. Tasković, Some results in the fixed point theory. II, Publ. Inst. Math. (Beograd) (N.S.) 27(41) (1980), 249258. MR 621957 (82f:54082)
 [10]
 , Some theorems on fixed point and its applications, Ann. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat. 24 (1984), 151162.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
54H25,
54C60
Retrieve articles in all journals
with MSC:
54H25,
54C60
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919850787887X
PII:
S 00029939(1985)0787887X
Keywords:
Fixed point theorems,
contraction and nonexpansive mappings,
complete metric space,
topological space
Article copyright:
© Copyright 1985
American Mathematical Society
