Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extreme points in duals of complex operator spaces


Authors: Åsvald Lima and Gunnar Olsen
Journal: Proc. Amer. Math. Soc. 94 (1985), 437-440
MSC: Primary 46B10; Secondary 46B20, 47D35
DOI: https://doi.org/10.1090/S0002-9939-1985-0787889-3
MathSciNet review: 787889
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ X$ and $ Y$ are complex Banach spaces, and $ K(X,Y)$ is the space of compact linear operators from $ X$ into $ Y$, then $ \operatorname{ext}B(K{(X,Y)^ * }) = \operatorname{ext}B({X^{ * * }}) \otimes \operatorname{ext}B({Y^ * })$.


References [Enhancements On Off] (What's this?)

  • [1] E. Alfsen, Compact convex sets and boundary integrals, Ergebnisse Math. Grenzgebiete, Bd. 57, Springer-Verlag, Berlin and New York, 1971. MR 0445271 (56:3615)
  • [2] H. S. Collins and W. Ruess, Weak compactness in space of compact operators and of vector-valued functions, Pacific J. Math. 106 (1983), 45-71. MR 694671 (85j:46123)
  • [3] H. Fakhouri, Approximation par des opérateurs compacts ou faiblement compacts à valeurs dans $ C(X)$, Ann. Inst. Fourier (Grenoble) 27 (1977), 147-167. MR 0467378 (57:7237)
  • [4] P. Flinn, A characterization of $ M$-ideals in $ B({l_p})$for $ 1 < p < \infty $, Pacific J. Math. 98 (1982), 73-80. MR 644939 (84i:47064)
  • [5] P. Harmand and Å. Lima, Banach spaces which are $ M$-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. MR 735420 (86b:46016)
  • [6] Å. Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), 35-65. MR 511813 (80g:47048)
  • [7] G. Olsen, On the classification of complex Lindenstrauss spaces, Math. Scand. 35 (1974), 237-258. MR 0367626 (51:3868)
  • [8] W. M. Ruess and C. P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546. MR 682665 (84e:46007)
  • [9] R. R. Smith and J. D. Ward, $ M$-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349. MR 0467316 (57:7175)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10, 46B20, 47D35

Retrieve articles in all journals with MSC: 46B10, 46B20, 47D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0787889-3
Keywords: Compact operators, extreme points
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society