Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space


Author: V. D. Milman
Journal: Proc. Amer. Math. Soc. 94 (1985), 445-449
MSC: Primary 46B20
MathSciNet review: 787891
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this article is Theorem 1 which states that a quotient space $ Y,\dim Y = k$, of a subspace of any finite dimensional normed space $ X$, may be chosen to be $ d$-isomorphic to a euclidean space even for $ k = [\lambda n]$ for any fixed $ \lambda < 1$ (and $ d$ depending on $ \lambda $ only).


References [Enhancements On Off] (What's this?)

  • [F. T.] T. Figiel and Nicole Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), no. 2, 155–171. MR 571251 (81f:46024), http://dx.doi.org/10.1007/BF02760556
  • [K] B. S. Kašin, The widths of certain finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 334–351, 478 (Russian). MR 0481792 (58 #1891)
  • [M$ _{1}$] V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 28–37 (Russian). MR 0293374 (45 #2451)
  • [M$ _{2}$] -, Geometrical inequalities and mixed volumes in local theory of Banach spaces, Colloque Laurent Schwartz, Soc. Math. France, 1985.
  • [P] G. Pisier, Remarques sur un résultat non publié de B. Maurey, Seminar on Functional Analysis, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. V, 13 (French). MR 659306 (83h:46026)
  • 1. Gilles Pisier, 𝐾-convexity, Proceedings of research workshop on Banach space theory (Iowa City, Iowa, 1981) Univ. Iowa, Iowa City, Iowa, 1982, pp. 139–151. MR 724111 (84k:46015)
  • [S] L. A. Santalo, Un invariante afin para los cuerpos convexos de espacios de $ n$ dimensiones, Portugal. Math. 8 (1949).
  • [Sz] S. J. Szarek, Volume estimates and nearly Euclidean decompositions for normed spaces, Seminar on Functional Analysis, 1979–1980 (French), École Polytech., Palaiseau, 1980, pp. Exp. No. 25, 8. MR 604406 (82g:46041)
  • [U] P. S. Urysohn, Mean width and volume of convex bodies in an $ n$-dimensional space, Mat. Sb. 31 (1924), 477-486.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20

Retrieve articles in all journals with MSC: 46B20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0787891-1
PII: S 0002-9939(1985)0787891-1
Keywords: Finite-dimensional spaces, euclidean spaces
Article copyright: © Copyright 1985 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia