Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sur le plongement de $ X\times I\sp {n-2}$ dans une $ n$-variété


Author: Robert Cauty
Journal: Proc. Amer. Math. Soc. 94 (1985), 516-522
MSC: Primary 57N35; Secondary 54F20, 54F50
DOI: https://doi.org/10.1090/S0002-9939-1985-0787904-7
MathSciNet review: 787904
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ X$ is a locally connected continuum such that the product $ X \times {I^{n - 2}}$ of $ X$ and an $ \left( {n - 2} \right)$-cube can be embedded in an $ n$-manifold, then $ X$ is locally planar. An example shows that the converse is false.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, On embedding curves in surfaces, Fund. Math. 59 (1966), 73-89. MR 0200910 (34:796)
  • [2] C. E. Burgess, Compte-rendu de [6], Math. Rev. 26 (1963), #749, p. 144.
  • [3] S. Claytor, Peanian continua not imbeddable in a spherical surface, Ann. of Math. (2) 38 (1937), 631-646. MR 1503359
  • [4] W. Rosicki, On topological factors of $ 3$-dimensional locally connected continuum embeddable in $ {{\mathbf{E}}^3}$, Fund. Math. 99 (1978), 141-154. MR 0482692 (58:2749)
  • [5] T. B. Rushing, Topological embeddings, Academic Press, New York, 1973. MR 0348752 (50:1247)
  • [6] B. Stubblefield, Some embedding and nonembedding theorems for $ n$-manifolds, Trans. Amer. Math. Soc. 103 (1962), 403-420. MR 0143189 (26:749)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N35, 54F20, 54F50

Retrieve articles in all journals with MSC: 57N35, 54F20, 54F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0787904-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society