THE CATENARIAN PROPERTY OF POWER SERIES RINGS
OVER A PRÜFER DOMAIN

J. T. ARNOLD

ABSTRACT. Let D be a Prüfer domain that has the SFT-property. It is shown that the power series ring $D[[x]]$ is catenarian. If $n > 1$ and $\dim D > 1$ then the ring $D[[x_1, \ldots, x_n]]$ is not catenarian.

1. Introduction. Recall that a ring R is a catenary ring if for each saturated chain $P_0 < P_1 < \cdots < P_n$ of prime ideals of R we have $\text{rank}(P_n/P_0) = n$. In particular, an integral domain D is catenarian if, for every prime ideal P of D, the length of every saturated chain of prime ideals between (0) and P equals $\text{rank} P$. Based on the work of Ratliff in [9] and Seydi in [10], Lequain has shown in [7] that if D is a Noetherian integral domain then the domains $D[x]$, $D[x_1, \ldots, x_n]$, $D[[x]]$, and $D[[x_1, \ldots, x_n]]$ are simultaneously catenarian.

In [4] and [5] it is shown that if D is a finite-dimensional Bezout domain then $D[x]$ is catenarian. More recently, De Souza Doering and Lequain have shown in [8] that if D is a finite dimensional Prüfer domain then $D[x]$ is catenarian. Finally, Bouvier and Fontana have shown in [6] that if D is a locally finite-dimensional Prüfer domain then $D[x_1, \ldots, x_n]$ is catenarian for each $n > 1$. In view of the above referenced results for Noetherian integral domains, it is natural to inquire about the catenarian properties of $D[[x]]$ and $D[[x_1, \ldots, x_n]]$ when D is a Prüfer domain.

In [1] the author has defined an ideal A of a ring R to be of strong finite type (or an SFT-ideal) provided there is a finitely generated ideal $B \subset A$ and a positive integer k such that $a^k \in B$ for each $a \in A$. The ring R satisfies the SFT-property provided each ideal of R is an SFT-ideal. It is shown in [1] (cf. the proof of [1, Theorem 1]) that if a ring R does not have the SFT-property then there exists an infinite chain of prime ideals in $R[[X]]$. We must, therefore, restrict our attention to Prüfer domains with the SFT-property. Such domains have already been studied in [2 and 3].

2. The catenarian property in $D[[x]]$. Throughout this section, D denotes a Prüfer domain with the SFT-property and K denotes the quotient field of D. We let $X_n = \{x_1, \ldots, x_n\}$ and we write $D[[X_n]]$ to denote $D[[x_1, \ldots, x_n]]$.

Lemma 1. Let Q_1 and Q_2 be prime ideals of $D[[X_n]]$ such that $Q_2 < Q_1$, $\text{rank}(Q_1/Q_2) = 1$, and $Q_i \cap D = P_i$, $i = 1, 2$. Then either $P_1 = P_2$ or $\text{rank}(P_1/P_2) = 1$ and $Q_1 \subset P_1 + (X_n)$.

Proof. Suppose that $P_2 < P_1$, let $p \in P_1 \setminus P_2$ (cf. [2, Lemma 2.7]), and let W be a valuation overring of $D[[X_n]]$ with prime ideals $N_2 < N_1$ such that $N_i \cap D[[X_n]] = Q_i$, $i = 1, 2$, N_1 is maximal in W, and $N_1 = \text{rad}(pW)$. Since $V = W \cap K$ is a
valuation overring of \(D \) centered on \(P_1 \) we must have \(V = DP_1 \). Assume there exists a prime ideal \(P \) of \(D \) such that \(P_2 < P < P_1 \). Then \(PV \subset \bigcap_{k=1}^{\infty} p^k V \) so \(PW \subset \bigcap_{k=1}^{\infty} p^k W \). If we set \(N = \bigcap_{k=1}^{\infty} p^k W \) then \(N \) is a prime ideal of \(W \) and, since \(P \subset N \cap D < P_1 \), it follows that \(Q_2 < N \cap D[[X_n]] < Q_1 \). But this contradicts our assumption that \(\text{rank}(Q_1/Q_2) = 1 \), so we conclude that \(\text{rank}(P_1/P_2) = 1 \).

Let \(S \) denote the set of invertible ideals \(A \) of \(D \) such that \(P_1 < A \). As in [3, p. 901], we see that \(S \) is a multiplicatively closed set of invertible ideals and \(D_S = \{ \xi \in K | \xi A \subset D \text{ for some } A \in S \} \) is a flat overring of \(D \) with prime ideals \(\{ PD_S \mid P \text{ is a prime ideal of } D \text{ and } P \neq P_1 \} \). In particular, \(P_1 D_S \) is a maximal ideal of \(D_S \) and, since \(P_1 D_S \cap D = P_1 \) and \(P_1 D_S \subset D \), we have \(P_1 = P_1 D_S \). Following the proof of [3, Theorem 3.6] we see that \(W \supset D_S[[X_n]] \).

Set \(P_1 = N_1 \cap D_S[[X_n]] \). Then \(P_1 \cap D_S = P_1 D_S \), so \(P_1 \subset [P_1 + (X_n)]D_S[[X_n]] \). Therefore, \(Q_1 = P_1 \cap D[[X_n]] \subset P_1 + (X_n) \).

For a prime ideal \(Q \) of \(D[[x]] \), let \(\mathcal{A}(Q) \) denote the set of prime ideals \(Q' \) of \(D[[x]] \) such that \(Q < Q' \) and \(\text{rank}(Q'/Q) = 1 \). Similarly, \(\mathcal{B}(Q) \) denotes the set of prime ideals \(Q' \) of \(D[[x]] \) such that \(Q' < Q \) and \(\text{rank}(Q/Q') = 1 \). Finally, \(I(Q) \) denotes the ideal of \(D \) consisting of the constant terms of elements of \(Q \).

Lemma 2. Let \(Q \) be a prime ideal of \(D[[x]] \) such that \(Q \cap D = P \), \(P[[x]] < Q \), and \(Q \neq P + (x) \). Then

1. \(\mathcal{A}(Q) \) is a finite set and \(\mathcal{A}(Q) = \{ P' + (x) \mid P' \text{ is minimal over } I(Q) \} \subset \{ P' + (x) \mid \text{rank}(P'/P) = 1 \} \) and
2. \(P[[x]] \) is the unique element in \(\mathcal{B}(Q) \).

Proof. Let \(Q' \) be a prime ideal of \(D[[x]] \) and set \(P' = Q' \cap D \). Then \(P'[[x]] \subset Q' \) by [1, Theorem 1] and, by applying Lemma 3.5 of [3] to \((D/P')[[x]] \), we see that either \(Q' = P'[[x]] \) or \(\text{rank}(Q'/P'[[x]]) = 1 \). If \(Q' \in \mathcal{A}(Q) \) it follows that \(Q' < P' \), so, by Lemma 1, \(\text{rank}(P'/P) = 1 \) and \(Q' \subset P' + (x) \). But \(Q' \neq P'[[x]] \) by [2, Corollary 3.6] so \(Q' = P' + (x) \). Since \(Q < Q' \) it is necessary that \(I(Q) \subset P' \). But \(I(Q) \notin P' \) (otherwise we would have \(Q \subset P + (x) \)), so \(P' \) is minimal over \(I(Q) \).

Conversely, let \(P' \) be a prime ideal of \(D \) such that \(P' \) is minimal over \(I(Q) \). Then \(Q < P' + (x) \), so there exists a prime ideal \(Q'' \) of \(D[[x]] \) such that \(Q < Q'' \subset P' + (x) \) and \(Q'' \in \mathcal{A}(Q) \). As we have just shown, \(Q'' = P'' + (x) \) for some prime ideal \(P'' \) of \(D \) such that \(\text{rank}(P''/P) = 1 \) and \(P'' \) is minimal over \(I(Q) \). It follows that \(P' = P'' \) and, hence, that \(P' + (x) \in \mathcal{A}(Q) \). The finiteness of \(\mathcal{A}(Q) \) follows from Corollary 2.6 of [2].

Now suppose that \(Q' \in \mathcal{B}(Q) \) and \(P' = Q' \cap D \). Since \(Q \notin P + (x) \), it follows from Lemma 1 that \(P = P' \). Consequently, \(Q' = P[[x]] \).

Lemma 3. Let \(P \) be a nonzero prime ideal of \(D \) and let \((0) < Q_1 < \cdots < Q_s < P + (x) \) be a saturated chain of prime ideals in \(D[[x]] \). Then \(s = \text{rank } P \).

Proof. Suppose that \(s > 1 \) and let \(P_1 \) be the unique rank one prime ideal of \(D \) that is contained in \(P \). Either \(Q_1 = P_1[[x]] \) or \(Q_1 \cap D = (0) \). Since \(Q_2 \cap D \neq (0) \) by [3, Lemma 3.5], \(Q_1 \cap D = (0) \) implies, by Lemma 1, that \(Q_2 \cap D = P_1 \). Thus, since \(\text{rank } P_1[[x]] = 1 \), in either case we have that \(Q_2 > P_1[[x]] \). Since \(P + (x) > Q_2 \) by assumption, it follows that \(P \neq P_1 \); that is, \(\text{rank } P \geq 2 \). Thus, if \(\text{rank } P = 1 \), then \(s = 1 \). On the other hand, if \(\text{rank } P > 1 \) we may pass to \(D/P_1 \) and argue, by induction, that \(s = \text{rank } P \).
THEOREM 4. If D is a Prüfer domain with the SFT-property, then $D[[x]]$ is catenarian.

Proof. Let Q be a nonzero prime ideal of $D[[x]]$ with $P = Q \cap D$. If $Q = P[[x]]$ then, by [2, Corollary 3.6], there is a unique chain of prime ideals between (0) and Q. Likewise, if $Q > P[[x]]$ but $Q \neq P + (x)$, then, by Lemma 2(2) and [2, Corollary 3.6], there is a unique chain of prime ideals between (0) and Q. The remaining case, $Q = P + (x)$, has already been handled in Lemma 3.

If $\dim D = 1$ then D is a Dedekind domain (cf. [2, p. 4]) and hence, by [7, Theorem 2.6], $D[[X_n]]$ is catenarian for each n. If $\dim D = m$ then, by [3, Theorem 3.6], $\dim D[[X_n]] = mn + 1$. Indeed, if M is a maximal ideal of D and rank $M = m$, then rank($M + (X_n)$) = $mn + 1$. But rank(x_n) = 1 and

$$\text{rank}((M + (X_n))/(x_n)) = \text{rank}(M + (X_{n-1})) = m(n-1) + 1,$$

so if $m > 1$ then each saturated chain of the form $(0) < (x_n) < \cdots < M + (X_n)$ has length at most $m(n-1) + 2 < mn + 1$. Thus, $D[[X_n]]$ is not catenarian.

3. The valuation ring case. A valuation ring V has the SFT-property if and only if it is a discrete valuation ring. (A valuation ring V is discrete provided $P \neq P^2$ for each prime ideal P of V. Cf. Lemma 2.7 and Proposition 3.1 of [2].) The results of §2 allow us to give a fairly complete description of the prime spectrum of $V[[x]]$ when V is a discrete valuation ring. First, we restate and strengthen Lemma 2 as follows.

Proposition 5. Let V be a discrete valuation ring and let Q be a prime ideal of $V[[x]]$. If $Q \cap V = P$, $P[[x]] < Q$, and $Q \neq P + (x)$, then

1. $A(Q) = \{P' + (x)\}$ where P' is the unique prime ideal of V such that $P < P'$ and rank(P'/P) = 1,
2. $B(Q) = \{P[[x]]\}$,
3. Q is principal.

Proof. (1) and (2) are immediate from Lemma 2. We first prove (3) for the case $P = (0)$. In this case rank $P' = 1$, and if we set $W = V_{P'}$, then $W[[x]]_{V \setminus \{0\}} = V[[x]]_{V \setminus \{0\}}$. It follows that $Q' = QV[[x]]_{V \setminus \{0\}}$ is a prime ideal of $W[[x]]$ such that $Q' \cap W = (0)$ and $Q' \cap V[[x]] = Q$. But $W[[x]]$ is a unique factorization domain so Q' is principal.

Suppose that $Q' = f'W[[x]]$, where $f' = \sum_{i=0}^{\infty} w_i x^i$. Since $Q' \not\subset (PW)[[x]]$, some $w_i, i \geq 1$, is a unit in W. Thus, we may write $f' = f'_1 + x^k u$ where $k \geq 1$, $f'_1 \in (PW)[[x]]$, and u is a unit in $W[[x]]$. If $f = f' u^{-1} = f'_1 u^{-1} + x^k f_1 = f_1 + x^k$ then $f_1 = f'_1 u^{-1}$ is in $(PW)[[x]] = P[[x]] \subset V[[x]]$. Therefore, $f \in V[[x]]$ and $Q' = fW[[x]]$. Let $q \in Q$ and write $q = fh$ where $h \in W[[x]]$. Then $q = f_1 h + x^k h$ and $f_1 h \in P[[x]] \subset V[[x]]$ so $x^k h = q - f_1 h \in V[[x]]$. It follows that $h \in V[[x]]$ and $Q = fV[[x]]$.

In the general case we may now conclude that $Q = P[[x]] + fV[[x]]$ where, if $f = \sum_{i=0}^{\infty} a_i x^i$, then $a_0 \notin P$. Thus, if $p \in P$ then $p/a_0^n \in V$ for each positive integer n. It follows that $Pf^{-1} \subset V[[x]]$ and, hence, that $P[[x]] \subset fV[[x]]$. Therefore, $Q = fV[[x]]$.

Question. What is a characterization of the prime elements of $V[[x]]$?
We conclude with a diagram which illustrates the prime spectrum of a three-dimensional discrete valuation ring V. Let $(0) = P_0 < P_1 < P_2 < P_3$ be the prime ideals of V and let f_i, $0 \leq i \leq 2$, denote arbitrary prime elements of $V[[x]]$ such that $f_i V[[x]] \cap V = P_i$. We use $A \rightarrow B$ to mean $A > B$. We thus have the following diagram of prime ideals in $V[[x]]$.

\[
\begin{array}{cccc}
(x) & \rightarrow & P_1 + (x) & \rightarrow & P_2 + (x) & \rightarrow & P_3 + (x) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\phi V[[x]] & \rightarrow & f_1 V[[x]] & \rightarrow & f_2 V[[x]] & \rightarrow & \phi V[[x]] \\
(0) & \rightarrow & P_1[[x]] & \rightarrow & P_2[[x]] & \rightarrow & P_3[[x]]
\end{array}
\]

REFERENCES

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061