Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The lower central series in some groups with the subnormal join property


Author: Howard Smith
Journal: Proc. Amer. Math. Soc. 94 (1985), 585-588
MSC: Primary 20E15; Secondary 20F14
DOI: https://doi.org/10.1090/S0002-9939-1985-0792265-3
MathSciNet review: 792265
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following question is considered: What groups $ G$ are such that, given any subnormal subgroups $ H$ and $ K$ of $ G$, with join $ J$, and given any positive integers $ a$ and $ b$, there exists an integer $ c$ such that $ {\gamma _c}(J)$ is contained in $ {\gamma _a}(H){\gamma _b}(K)$? It is shown that many, but not all, groups known to have the "subnormal join property" satisfy this further condition.


References [Enhancements On Off] (What's this?)

  • [1] J. C. Lennox, D. Segal and S. E. Stonehewer, The lower central series of a join of subnormal subgroups, Math. Z. 154 (1977), 85-89. MR 0444779 (56:3127)
  • [2] J. C. Lennox and S. E. Stonehewer, The join of two subnormal subgroups, J. London Math. Soc. (2) 22 (1980), 460-466. MR 596324 (81m:20038)
  • [3] D. J. S. Robinson, Joins of subnormal subgroups, Illinois J. Math. 9 (1965), 144-168. MR 0170953 (30:1187)
  • [4] -, On the theory of subnormal subgroups, Math. Z. 89 (1965), 30-51. MR 0185011 (32:2481)
  • [5] -, Finiteness conditions and generalised soluble groups, Vol. 2, Springer-Verlag, Berlin and New York, 1972.
  • [6] J. E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra 2 (1965), 402-412. MR 0193147 (33:1368)
  • [7] -, The derived series of a join of subnormal subgroups, Math. Z. 117 (1970), 57-69. MR 0276358 (43:2105)
  • [8] H. Smith, Commutator subgroups of a join of subnormal subgroups, Arch. Math. (Basel) 41 (1983), 193-198. MR 721049 (85c:20024)
  • [9] -, Groups with the subnormal join property, Canad. J. Math. (to appear). MR 777035 (86d:20033)
  • [10] S. E. Stonehewer, Nilpotent residuals of subnormal subgroups, Math. Z. 139 (1974), 45-54. MR 0352275 (50:4762)
  • [11] J. P. Williams, The join of several subnormal subgroups, Proc. Cambridge Philos. Soc. 92 (1982), 391-399. MR 677464 (84b:20031a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20E15, 20F14

Retrieve articles in all journals with MSC: 20E15, 20F14


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792265-3
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society