The lower central series in some groups with the subnormal join property

Author:
Howard Smith

Journal:
Proc. Amer. Math. Soc. **94** (1985), 585-588

MSC:
Primary 20E15; Secondary 20F14

MathSciNet review:
792265

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following question is considered: What groups are such that, given any subnormal subgroups and of , with join , and given any positive integers and , there exists an integer such that is contained in ? It is shown that many, but not all, groups known to have the "subnormal join property" satisfy this further condition.

**[1]**John C. Lennox, Daniel Segal, and Stewart E. Stonehewer,*The lower central series of a join of subnormal subgroups*, Math. Z.**154**(1977), no. 1, 85–89. MR**0444779****[2]**John C. Lennox and Stewart E. Stonehewer,*The join of two subnormal subgroups*, J. London Math. Soc. (2)**22**(1980), no. 3, 460–466. MR**596324**, 10.1112/jlms/s2-22.3.460**[3]**Derek S. Robinson,*Joins of subnormal subgroups*, Illinois J. Math.**9**(1965), 144–168. MR**0170953****[4]**Derek S. Robinson,*On the theory of subnormal subgroups*, Math. Z.**89**(1965), 30–51. MR**0185011****[5]**-,*Finiteness conditions and generalised soluble groups*, Vol. 2, Springer-Verlag, Berlin and New York, 1972.**[6]**J. E. Roseblade,*On groups in which every subgroup is subnormal*, J. Algebra**2**(1965), 402–412. MR**0193147****[7]**James E. Roseblade,*The derived series of a join of subnormal subgroups*, Math. Z.**117**(1970), 57–69. MR**0276358****[8]**Howard Smith,*Commutator subgroups of a join of subnormal subgroups*, Arch. Math. (Basel)**41**(1983), no. 3, 193–198. MR**721049**, 10.1007/BF01194828**[9]**Howard Smith,*Groups with the subnormal join property*, Canad. J. Math.**37**(1985), no. 1, 1–16. MR**777035**, 10.4153/CJM-1985-001-8**[10]**Stewart E. Stonehewer,*Nilpotent residuals of subnormal subgroups*, Math. Z.**139**(1974), 45–54. MR**0352275****[11]**J. P. Williams,*The join of several subnormal subgroups*, Math. Proc. Cambridge Philos. Soc.**92**(1982), no. 3, 391–399. MR**677464**, 10.1017/S0305004100060102

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20E15,
20F14

Retrieve articles in all journals with MSC: 20E15, 20F14

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0792265-3

Article copyright:
© Copyright 1985
American Mathematical Society