CONSECUTIVE PRIMITIVE ROOTS IN A FINITE FIELD. II

STEPHEN D. COHEN

Abstract. The proof of the theorem that every finite field of order \(q \) (\(> 3 \)) such that \(q \equiv 7 \pmod{12} \) contains a pair of consecutive primitive roots is completed by consideration of the case in which \(q \equiv 1 \pmod{60} \).

1. Introduction. For any prime power \(q \), let \(F_q \) denote the finite field of order \(q \). As in [3], let \(C \) denote the class of prime powers \(q \) for which \(F_q \) contains a primitive root \(\gamma \) whose successor \(\gamma + 1 \) is also a primitive root. The object of this paper is to complete the proof of the following theorem.

Theorem 1.1. Let \(q \) (\(> 3 \)) be a prime power such that \(q \equiv 7 \pmod{12} \). Then \(q \) is in \(C \).

For any \(n \), let \(\theta(n) = \phi(n)/n \), where \(\phi \) is Euler's function. A conditional version of Theorem 1.1 was proved by Vegh [5, 6] for primes \(q \equiv 7 \pmod{12} \) satisfying \(\theta(q-1) > \frac{1}{4} \) when \(q \equiv 1 \pmod{4} \) and \(\theta(q-1) > \frac{1}{3} \) when \(q \equiv 11 \pmod{12} \). More significantly, the theorem was proved unconditionally by the author in the first part [3] except when \(q \equiv 1 \pmod{60} \). In this second part, although we begin with a brief treatment of general fields of odd square order, the main business is a discussion of this exceptional case. By a distinct development of the work of [3] including careful handling of the Jacobi sums involved, we deal theoretically with all prime powers \(q \) apart from 33 prime values, the largest of which is 2,762,761. Finally, using a computer, we have been able to exhibit explicitly a pair of consecutive primitive roots for each of these remaining values.

We should remark here that it was noted in Theorem 3.1 of [3] that, even if \(q \equiv 7 \pmod{12} \), then \(q \) is in \(C \) provided \(q > 1.16 \times 10^{18} \). Further work, probably requiring more extensive computation, is needed to consider all smaller values of \(q \); this may be the subject of further study.

2. Fields of square order. From now on we suppose that \(q \) is an odd prime power. In this section we also suppose that \(q = q_0^2 \) is a square and establish the fact that such a \(q \) is always in \(C \) as a consequence of the work of [2] (which itself included some delicate calculation).

Theorem 2.1. Suppose \(q = q_0^2 \). Then every nonzero member of \(F_{q_0} \) is the sum of two primitive roots of \(F_q \).
Proof. Let \(a (\neq 0) \in F_{q_0} \). Select any nonsquare \(b \) in \(F_{q_0} \) and let \(\gamma b \) be a square root of \(b \) in \(F_q \). Then, by Theorem 1.1 of [2], there exists \(c \) in \(F_{q_0} \) such that
\[
\gamma = a/2 + c\gamma b
\]
is a primitive root in \(F_q \). Now, \(\gamma \) is conjugate over \(F_{q_0} \) to \(\gamma = \gamma q_0 = a/2 - c\gamma b \), itself a primitive root of \(F_q \). Since \(\gamma + \gamma = a \), the proof is complete.

Corollary 2.2. Suppose \(q = q_0^2 \). Then \(q \) is in \(C \).

Proof. By Theorem 2.1, there exist primitive roots \(\gamma_1, \gamma_2 \) in \(F_q \) such that
\[
\gamma_1 + \gamma_2 = 1.
\]
However, since \(q \equiv 1 \pmod{4} \), then \(-\gamma_2 \) is also a primitive root and so \(\gamma_1 - 1 \) and \(\gamma_1 \) are consecutive primitive roots.

3. General formulae and estimates. We suppose from now on that \(q \equiv 1 \pmod{4} \) (and even, when necessary, that \(q \equiv 1 \pmod{60} \)). This implies that if \(\chi \) is any multiplicative character of \(F_q \) of square-free order, then \(\chi(-1) = 1 \). In particular, if \(\eta \) is also a character of \(F_q \), then the Jacobi sum \(J(\chi, \eta) \) is given by
\[
J(\chi, \eta) = \sum_{\xi \in F_q} \chi(\xi) \eta(\xi + 1).
\]

As in [3], for any divisors \(e_1 \) and \(e_2 \) of \(q - 1 \), we denote by \(N(e_1, e_2) \) the number of elements \(\xi (\neq 0, -1) \) in \(F_q \) for which \(s(\xi) \) and \(e_1 \) are coprime and \(s(\xi + 1) \) and \(e_2 \) are coprime, where \((q - 1)/s(\xi)\) is the order of \(\xi \) in \(F_q^* \).

We summarise some immediate consequences of Propositions 2.1, 2.3 and 2.6 of [3] taking into account the fact that here \(q \equiv 1 \pmod{4} \).

Proposition 3.1. Suppose that \(e_1 \) and \(e_2 \) are divisors of \(q - 1 \). Then
\[
\begin{align*}
(i) & \quad N(e_1, e_2) = N(e_2, e_1); \\
(ii) & \quad N_q \geq N(e_1, q - 1) + N(q - 1, e_2) - N(e_1, e_2); \\
(iii) & \quad N(e_1, e_2) = \theta(e_1)\theta(e_2) \sum_{d_1|e_1} \mu(d_1) \sum_{d_2|e_2} \mu(d_2) \sum_{\chi \pmod{d_1}} \sum_{\eta \pmod{d_2}} J(\chi, \eta)
\end{align*}
\]
where \(\sum_{\chi \pmod{d}} \) denotes a sum over all \(\phi(d) \) characters of order \(d \);
\[
(iv) \quad N(2, e_2) = \frac{1}{2}\theta(e_2)(q - 1).
\]

Corollary 3.2. Suppose \(2|e|q - 1 \). Then
\[
N_q \geq \left(2 - \frac{\theta(q - 1)}{\theta(e)} - 1\right)N(e, e) + 2\theta(e)\theta(q - 1) \sum_{d|e} M_e(d),
\]

where
\[
M_e(d) = \frac{\mu(d)}{\phi(d)} \sum_{d'|q - 1} \mu(d') \frac{\phi(d')}{\phi(d)} \sum_{\chi \pmod{d}} \sum_{\eta \pmod{d'}} J(\chi, \eta).
\]

Proof. By Proposition 3.1, the right-hand side of (3.1) equals
\[
N(e, q - 1) + N(q - 1, e) - N(e, e) - 2\theta(e)N(2, q - 1) - \theta(q - 1)N(2, e),
\]
the quantity in braces, in fact, having the value 0.
Lemma 3.3. Suppose \(d (> 2) \) and \(e \) are divisors of \(q - 1 \) with \(e \) even and \(d | e \). Then

\[
|M_e(d)| \leq \lambda_d(W(q - 1) - W(e))q,
\]

where \(W(n) = 2^\omega(n) \), the number of square-free divisors of \(n \), and

\[
\lambda_d = \sum_{i=1}^{d} |e_d(i) + e_d(d + 1 - i)|/2\phi(d)W(d) \leq 1,
\]

where \(e_d(i) = \mu((d, i))\phi((d, i)). \) In particular, if \(q \equiv 1 \pmod{60} \), \(\lambda_3 = \frac{1}{2}, \lambda_5 = \frac{3}{4}, \lambda_6 = \frac{3}{4}, \lambda_{10} = \frac{5}{8}, \lambda_{15} = \frac{1}{2}, \lambda_{30} = \frac{21}{32} \).

Proof. We can suppose that \(d \) is square-free. The absolute value of each Jacobi sum in (3.2) equals \(jq \) which quickly yields (3.3) with \(\lambda_d \leq 1 \) (cf. Theorem 2.7 of [3]). The key to the distinct improvement (3.4) is the identity (see pp. 92, 93 and 147 of [4])

\[
J(\chi, \eta) = J(\chi, \chi^{-1}\eta^{-1})
\]

(again recalling that here \(\chi(-1) = 1 \)).

Write the product of the distinct primes in \(q - 1 \) as \(Qd \) and the product of the distinct primes in \(e \) as \(Ed \). Then a divisor \(d' \) of \(q - 1 \) (in (3.2)) can be expressed as \(d_1d_2 \), where \(d_1|Q, d_2|e \) if and only if \(d_1 \nmid E \). Hence,

\[
M_e(d) = \frac{\mu(d)}{\phi(d)} \sum_{d_1|Q} \frac{\mu(d_1)}{\phi(d_1)} \sum_{d_2|d, d_1|Q} \sum_{\chi \equiv \eta \pmod{d_1}} L(\chi, \eta),
\]

where (replacing \(\chi \) by \(\chi^{-1} \) for convenience) we have

\[
L(\chi, \eta) = \sum_{d_2|d} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\eta \equiv \eta \pmod{d_2}} J(\chi^{-1}, \eta^*\eta) = \sum_{d_2|d} \frac{\mu(d_2)}{\phi(d_2)} \sum_{j=1}^{d_2} J(\chi^{-1}, \chi^{jd/d_2}\eta) = \frac{\mu(d)}{\phi(d)} \sum_{i=1}^{d} e(i)J(\chi^{-1}, \chi^i\eta) = \frac{\mu(d)}{2\phi(d)} \sum_{i=1}^{d} e(i)(J(\chi^{-1}, \chi^i\eta) + J(\chi^{-1}, \chi^{d+1-i}\eta^{-1})), \quad \text{by (3.5)},
\]

Now, because \(e \) is even, whenever \(E \) is odd then \(d \) is even and \(Q \) is odd. Thus, if \(d_1|Q \) but \(d_1 \nmid E \), then \(d_1 > 2 \) and so \(\eta \neq \eta^{-1} \) in (3.6). By (3.7), we have

\[
L(\chi, \eta) + L(\chi, \eta^{-1}) = \frac{\mu(d)}{2\phi(d)} \sum_{i=1}^{d} (e(i) + e(d + 1 - i))(J(\chi^{-1}, \chi^i\eta) + J(\chi^{-1}, \chi^{d+1-i}\eta^{-1})),
\]
which has absolute value at most \(v_d \sqrt{q/\phi(d)} \), where
\[
v_d = \sum_{i=1}^{d} |e(i) + e(d + 1 - i)|.
\]

Hence, from (3.6),
\[
|M_\epsilon(d)| \leq (v_d \sqrt{q/\phi(d)}) \cdot \frac{1}{2} \phi(d_1) \cdot \phi(d) \cdot (\phi(d_1))^{-1} \cdot (W(Q) - W(E)) \cdot (\phi(d))^{-1}
\]
\[
= \lambda_d (W(q - 1) - W(e)) q,
\]
since \(W(Q) - W(E) = (W(q - 1) - W(e))/W(d) \).

Finally, short calculations yield the displayed explicit values of \(\lambda_d \).

By Lemma 3.3, in order to apply Corollary 3.2 it remains to estimate \(N(e, e) \). In fact, as in Theorem 2.7 of [3], we have
\[
N(e, e) = \theta^2(e) \{q + 1 - 1/\theta(e) + E(e)\},
\]
where
\[
(3.8) \quad E(e) = \sum_{d_1 | e} \sum_{d_2 | e} \mu(d_1) \mu(d_2) \sum_{\chi \equiv \eta^{-1}} \sum_{\chi \equiv \eta^{-1}} J(\chi, \eta),
\]
so that
\[
|E(e)| \leq \left\{(W(e) - 2)^2 - (\theta(e))^{-1} + 2\right\} q;
\]
in particular,
\[
(3.9) \quad |E(6)| \leq 3/4 q, \quad |E(30)| \leq (137/4) q \quad (q \equiv 1 (\text{mod } 60)).
\]
We outline some improvements of (3.9) based on the use of (3.5) in (3.8).

First, if \(\chi \) is a character of order 6, we have
\[
E(6) = -\frac{1}{2} \Re \left\{ J(\chi, \chi) + 2J(\chi, \chi^2) - J(\chi^2, \chi^2) \right\}
\]
so that
\[
(3.10) \quad |E(6)| \leq 2q.
\]
Indeed, while the fact is not used in the sequel, it is interesting to note that if \(q \) is a prime, then \(E(6) \) can be evaluated explicitly in terms of a specific quadratic partition of \(q \) (see [1, §3.1]). Thus, \(E(6) = -a - \frac{3}{2} b \) and
\[
N(6, 6) = \frac{1}{6} (q - 2 - a - \frac{3}{2} b),
\]
where \(a^2 + 3b^2 = q \), \(a \equiv -1 (\text{mod } 3) \) and \(z \in \{0, 1, -1\} \) with \(z = 0 \) if and only if 2 is a cubic residue in \(F_q \). It follows that, when \(q \) is prime,
\[
|E(6)| < \left\{ \begin{array}{ll}
q & \text{if } 2 \text{ is a cubic residue in } F_q, \\
\frac{1}{2} \sqrt{7q} & \text{otherwise},
\end{array} \right.
\]
an improvement on (3.10).

Resuming the discussion with a general prime power \(q \equiv 1 (\text{mod } 60) \) and similarly working carefully with (3.5) in (3.8) with \(e = 30 \), we obtain
\[
(3.11) \quad N(30, 30) = \frac{16}{225} \left(q - \frac{11}{4} + E(30) \right), \quad |E(30)| \leq \frac{35}{2} \sqrt{q},
\]
although, for our purposes, (3.9) would suffice almost as well.
Now select, in turn, $e = 6, 30$ in Corollary 3.2 and use the estimates of Lemma 3.3, (3.10) and (3.11) observing, in particular, that $\lambda_3 + \lambda_6 = \frac{5}{4}$ and $\lambda_3 + \lambda_5 + \lambda_6 + \lambda_{10} + \lambda_{15} + \lambda_{30} = \frac{131}{31}$.

Proposition 3.4. Suppose $q \equiv 1 \pmod{12}$ and $\theta(q - 1) > \frac{1}{5}$. Then

$$N_q \geq \frac{1}{6}(6\theta(q - 1) - 1)\sqrt{q}R_q(\theta(q - 1)),$$

where

$$R_q(\theta) = \sqrt{q} - \left(\frac{5(W(q - 1) - 4)}{4(1 - (1/6\theta))} + 2 + \frac{2}{\sqrt{q}} \right).$$

Proposition 3.5. Suppose $q \equiv 1 \pmod{60}$ and $\theta(q - 1) > \frac{1}{15}$. Then

$$N_q \geq \frac{8}{225}(15\theta(q - 1) - 2)\sqrt{q}S_q(\theta(q - 1)),$$

where

$$S_q(\theta) = \sqrt{q} - \left(\frac{131(W(q - 1) - 8)}{32(1 - (2/15\theta))} + \frac{35}{2} + \frac{11}{4q} \right).$$

Finally in this section, we refine the bound (3.1) of [3] when $e = 6$. By Proposition 3.1 we have

$$N_q \geq N(6, q - 1) + N(q - 1, 2) - N(6, 2)$$

$$= 3\theta(q - 1)N(6, 6) + \frac{1}{2}\theta(q - 1)(M_6(3) + M_6(6))$$

$$+ (\frac{1}{2}\theta(q - 1) - \frac{1}{6})(q - 1)$$

and an application of Lemma 3.3 yields the following result:

Proposition 3.6. Suppose $q \equiv 1 \pmod{12}$ and $\theta(q - 1) > \frac{1}{5}$. Then

$$N_q \geq \frac{1}{6}(5\theta(q - 1) - 1)\sqrt{q} \left(\frac{\theta(q - 1) - 5W(q - 1) - 12}{2(5 - (1/\theta(q - 1)))} \right) - \frac{\theta(q - 1)}{3}.$$

4. Calculations. Let \mathcal{F} be the set of positive integers n for which $n \equiv 1 \pmod{60}$ and, for $r \geq 3$, \mathcal{F}_r the subset comprising those n with $\omega(n - 1) = r$. Also let $T_r = 4 \cdot 3 \cdot 5 \cdots p_r + 1$ (where p_r is the rth prime) be the least member of \mathcal{F}_r.

By Corollary 2.4 and Theorem 3.1(i) of [3], Theorem 1.1 holds for prime powers q in $\mathcal{F} \cup \bigcup_{r=4}^{15} \mathcal{F}_r$. Our principal tool for considering q in $\bigcup_{r=7}^{15} \mathcal{F}_r$ is Proposition 3.5 (wherewith we set $S_q = S_q(\theta(q - 1))$); for q in $\mathcal{F}_5 \cup \mathcal{F}_6$ we similarly rely mainly on Proposition 3.4 (with $R_q = R_q(\theta(q - 1))$) while Proposition 3.6 is used for q in \mathcal{F}_4.

First, suppose $q \in \bigcup_{r=10}^{15} \mathcal{F}_r$. Then $\theta(q - 1) \geq \theta(T_{15} - 1) > .1417$ and, easily,

$$\frac{S_q}{W(q - 1)} \geq \frac{S_{T_{15}}(.1417)}{W(T_{15} - 1)} > \frac{131}{1024} - \frac{32(1 - (2/15(.1417)))}{1024} > 40.$$

Hence, N_q is positive. Similarly, if $q \in \mathcal{F}_9$, then $\theta(q - 1) \geq \theta(T_9 - 1) > .1613$ and $S_q \geq S_{T_9}(.1613) > 9200$. Next, if $q \in \mathcal{F}_8$, then $\theta(q - 1) > .171$ and $S_q > S_{T_8}(.171)$ which is positive certainly if $q > 21,410,000$. Moreover, $T_8 = 19,399,381 = 47 \cdot 289543$, the only member of \mathcal{F}_8 less than this bound, is not a prime power. More
precision is required for \(q \) in \(\mathcal{T}_7 \), in which case \(\theta(q - 1) > .1805 \). As above, we can dispose of all such \(q > 3,600,300 \) for then \(S_q(.1805) \) is positive. A few smaller values of \(q \) in \(\mathcal{T}_7 \) are, however, also covered by Propositions 3.4 or 3.5. For example, temporarily setting \(n = 4 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) we find that \(R_q \) is positive when \(q = nm + 1 \), where \(m = 13 \cdot 37, 17 \cdot 23, 2 \cdot 13 \cdot 29 \) or \(2 \cdot 17 \cdot 19 \). In fact, just 12 members of \(\mathcal{T}_7 \) (not all prime powers) remain unaccounted for; these (along with their prime factorisations if composite) are

\[
\begin{align*}
1,021,021 &= T_7 = 181 \cdot 5641; & 1,141,141 &= n \cdot 13 \cdot 19 + 1 \\
1,381,381 &= n \cdot 13 \cdot 23 + 1; & 1,492,261 &= n \cdot 17 \cdot 19 + 1; \\
1,741,741 &= n \cdot 13 \cdot 29 + 1; & 1,806,421 &= n \cdot 17 \cdot 23 + 1; \\
1,861,861 &= n \cdot 13 \cdot 31 + 1; & 2,042,041 &= 2T_7 - 1 = 1429^2; \\
2,282,281 &= n \cdot 2 \cdot 13 \cdot 19 + 1; & 2,762,761 &= n \cdot 2 \cdot 13 \cdot 23 + 1; \\
3,063,061 &= 3T_7 - 2 & 3,423,421 &= n \cdot 2 \cdot 3 \cdot 13 \cdot 19 + 1 \\
&= 1451 \cdot 2111; & = 29 \cdot 97 \cdot 121.
\end{align*}
\]

Fortunately, \(1429^2 \notin C \) by Corollary 2.2. It therefore remains to check the seven primes which occur in the above list; for this we refer to the Table at the end.

We summarise rather briefly a similar program applied to \(\mathcal{T}_5 \cup \mathcal{T}_6 \) but based on Proposition 3.4.

If \(q \in \mathcal{T}_6 \), then \(q \geq T_6 = 60,061 \) and \(R_q > R_q(.1918) > 0 \) provided \(q > 330,000 \). More delicately, \(R_q \) is positive when \(q = nm + 1 \), where now \(n = 2 \cdot 3 \cdot 5 \cdot 7 \) and \(m = 11 \cdot 41, 13 \cdot 37, 17 \cdot 23, 2 \cdot 13 \cdot 19 \) or \(3 \cdot 11 \cdot 19 \). Excluding non-prime-power members of \(\mathcal{T}_6 \) we are left with twelve primes along with \(175,561 = 8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 + 1 = 419^2 \) and \(212,521 = 8 \cdot 3 \cdot 5 \cdot 7 \cdot 23 + 1 = 461^2 \) to which Corollary 2.2 applies.

If \(q \geq 4621 \in \mathcal{T}_5 \), then \(R_q \) (greater than \(R_q(.20779) \)) is positive whenever \(q > 32,000 \) and also when \(q = 19,741 = 4 \cdot 3 \cdot 5 \cdot 7 \cdot 47 + 1 \). Additionally, by Proposition 3.6, \(N_q \) is positive when \(q = 15,181 = 4 \cdot 3 \cdot 5 \cdot 11 \cdot 23 + 1 \). Just ten primes in \(\mathcal{T}_5 \) (lying between 4,621 and 21,841) remain along with \(17,161 = 8 \cdot 3 \cdot 5 \cdot 11 \cdot 13 + 1 = 131^2 \) and \(19,321 = 8 \cdot 3 \cdot 5 \cdot 7 \cdot 23 + 1 = 139^2 \); for example 23,101, 23,941, 27,301 and 27,721 (all larger members of \(\mathcal{T}_5 \)) are not prime powers.

For \(q \in \mathcal{T}_4 \) (so that \(q \geq 421 \) and \(\theta(q - 1) \geq \frac{3}{5} \)) note that \(\theta(q - 1) \leq \frac{1}{2} \) only if 7, 11 or 13 divides \(q - 1 \). Here Proposition 3.6 immediately eliminates all \(q > 2,970 \) and, after further application, all prime powers except the primes 421, 661, 1,321 and 2,521 along with \(841 = 29^2 \).

Finally, each of the remaining 33 primes \(q \) in \(\mathcal{T} \) have been shown to be in \(C \) by means of a computer program which calculated the smallest positive pair \((\gamma_q, \gamma_q + 1) \) of consecutive primitive roots in \(F_q \). Our Table lists these values of \(q \) together with the corresponding prime decomposition of \(q - 1 \) and value of \(\gamma_q \); note that the largest value of \(\gamma_q \) which occurs is 233.

The computer program was prepared by David Hare and the results checked independently by Mohan Nair and Richard Pinch at Glasgow. I am very grateful to all of them for their assistance and also to my friend Peter Clark for his help.
Table

<table>
<thead>
<tr>
<th>q</th>
<th>$q - 1$</th>
<th>γ_q</th>
<th>q</th>
<th>$q - 1$</th>
<th>γ_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7$</td>
<td>22</td>
<td>120,121</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$</td>
<td>58</td>
</tr>
<tr>
<td>661</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 11$</td>
<td>34</td>
<td>133,981</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 29$</td>
<td>101</td>
</tr>
<tr>
<td>1,321</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 11$</td>
<td>56</td>
<td>135,661</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 19$</td>
<td>13</td>
</tr>
<tr>
<td>2,521</td>
<td>$2^3 \cdot 3^2 \cdot 5 \cdot 7$</td>
<td>22</td>
<td>157,081</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17$</td>
<td>233</td>
</tr>
<tr>
<td>4,621</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$</td>
<td>23</td>
<td>158,341</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 29$</td>
<td>50</td>
</tr>
<tr>
<td>8,581</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 11 \cdot 13$</td>
<td>6</td>
<td>180,181</td>
<td>$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$</td>
<td>22</td>
</tr>
<tr>
<td>9,241</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11$</td>
<td>61</td>
<td>185,641</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$</td>
<td>93</td>
</tr>
<tr>
<td>9,661</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 23$</td>
<td>39</td>
<td>235,621</td>
<td>$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$</td>
<td>30</td>
</tr>
<tr>
<td>12,541</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 11 \cdot 19$</td>
<td>72</td>
<td>300,301</td>
<td>$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$</td>
<td>40</td>
</tr>
<tr>
<td>14,281</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 17$</td>
<td>38</td>
<td>1,381,381</td>
<td>$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 23$</td>
<td>103</td>
</tr>
<tr>
<td>15,541</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 37$</td>
<td>17</td>
<td>1,492,261</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 19$</td>
<td>72</td>
</tr>
<tr>
<td>16,381</td>
<td>$2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$</td>
<td>17</td>
<td>1,741,741</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 29$</td>
<td>72</td>
</tr>
<tr>
<td>18,481</td>
<td>$2^4 \cdot 3 \cdot 5 \cdot 7 \cdot 11$</td>
<td>57</td>
<td>1,806,421</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 23$</td>
<td>29</td>
</tr>
<tr>
<td>21,841</td>
<td>$2^4 \cdot 3 \cdot 5 \cdot 7 \cdot 13$</td>
<td>22</td>
<td>1,861,861</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 31$</td>
<td>71</td>
</tr>
<tr>
<td>78,541</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17$</td>
<td>13</td>
<td>2,282,281</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 19$</td>
<td>68</td>
</tr>
<tr>
<td>92,821</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$</td>
<td>53</td>
<td>2,762,761</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 23$</td>
<td>203</td>
</tr>
<tr>
<td>106,261</td>
<td>$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland