Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fine embeddings of finite-dimensional subspaces of $ L\sb p,\;1\leq p<2$, into $ l\sp m\sb 1$


Author: Gideon Schechtman
Journal: Proc. Amer. Math. Soc. 94 (1985), 617-623
MSC: Primary 46E30; Secondary 46B99
DOI: https://doi.org/10.1090/S0002-9939-1985-0792272-0
MathSciNet review: 792272
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every $ m$-dimensional subspace of $ {L_p}$, $ 1 < p < 2$, $ (1 + \varepsilon )$-embeds into $ l_1^n$ as long as $ n \geqslant \eta {m^{1 + (1/p)}}{(\log m)^{ - 1}}$, where $ \eta = \eta (p,\varepsilon ) < \infty $. For subspaces of $ {L_1}$ we get a somewhat weaker result.


References [Enhancements On Off] (What's this?)

  • [1] W. B. Johnson and G. Schechtman, Embedding $ l_p^m$ into $ l_1^n$, Acta. Math. 149 (1982), 71-85. MR 674167 (84a:46031)
  • [2] W. B. Johnson, G. Schechtman and J. Zinn, Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Ann. Probab. 13 (1985), 234-253. MR 770640 (86i:60054)
  • [3] D. R. Lewis, Finite dimensional subspaces of $ {L_p}$, Studia Math. 63 (1978), 207-212. MR 511305 (80b:46043)
  • [4] R. Lepage, M. Woodroofe and J. Zinn, Convergence to a stable distribution via order statistics, Ann. Probab. 9 (1981), 624-632. MR 624688 (82k:60049)
  • [5] M. B. Marcus and G. Pisier, Characterizations of almost surely continuous $ p$-stable random Fourier series and strongly stationary processes, Acta Math. 152 (1984), 245-301. MR 741056 (86b:60069)
  • [6] B. Maurey, Théorèmes de factorisation pour les opérateurs à valeurs dans un espace $ {L^p}$, Astérisque Soc. Math. France, no. 11 (1974). MR 0344931 (49:9670)
  • [7] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes (to appear). MR 856576 (87m:46038)
  • [8] G. Pisier, On the dimension of the $ l_p^n$-subspaces of Banach spaces for $ 1 \leqslant p \leqslant 2$, Trans. Amer. Math. Soc. 276 (1983), 201-211. MR 684503 (84a:46035)
  • [9] G. Schechtman, Random embedding of euclidean spaces in sequence spaces, Israel J. Math. 40 (1981), 187-192. MR 634905 (83a:46032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30, 46B99

Retrieve articles in all journals with MSC: 46E30, 46B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792272-0
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society