Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convex functions and Fourier coefficients


Author: Hann Tzong Wang
Journal: Proc. Amer. Math. Soc. 94 (1985), 641-646
MSC: Primary 26A51; Secondary 26A24, 42A16
DOI: https://doi.org/10.1090/S0002-9939-1985-0792276-8
MathSciNet review: 792276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a continuous function defined on the interval $ (0,1)$. For $ n = 1,2, \ldots $ and $ 0 < s < t < 1$, denote by $ {a_n}(f;s,t),{b_n}(f;s,t)$ the $ n$th Fourier coefficients of $ f\vert(s,t)$. It is shown that the following statements are equivalent:

(i) $ f$ is strictly convex on $ (0,1)$.

(ii) $ {b_n}(f;s,t) < (2/n\pi )[f(s) - f((s + t))/2]$ for all $ n = 1,2, \ldots $ and whenever $ 0 < s < t < 1$.

(iii) $ {b_n}(f;s,t) > (2/n\pi )[f((s + t)/2) - f(t)]$ for all $ n = 1,2, \ldots $ and whenever $ 0 < s < t < 1$.

If, in addition, $ f$ is twice differentiable, then (i) and the following statement are also equivalent:

(iv) $ {a_n}(f;s,t) > 0$ for all $ n = 1,2, \ldots $ and whenever $ 0 < s < t < 1$.


References [Enhancements On Off] (What's this?)

  • [1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1934.
  • [2] P. Hartman, Convex functions and mean value inequalities, Duke Math. J. 39 (1972), 351-360. MR 0333090 (48:11415)
  • [3] T. Rado, On convex functions, Trans. Amer. Math. Soc. 37 (1935), 266-285. MR 1501787
  • [4] A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York, 1973. MR 0442824 (56:1201)
  • [5] E. M. Wright, An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620-622. MR 0064828 (16:341f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A51, 26A24, 42A16

Retrieve articles in all journals with MSC: 26A51, 26A24, 42A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792276-8
Keywords: Convex functions, Fourier coefficients, integral inequality
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society