Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Three-space problem for locally uniformly rotund renormings of Banach spaces


Authors: G. Godefroy, S. Troyanski, J. Whitfield and V. Zizler
Journal: Proc. Amer. Math. Soc. 94 (1985), 647-652
MSC: Primary 46B20
DOI: https://doi.org/10.1090/S0002-9939-1985-0792277-X
MathSciNet review: 792277
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ Y$ is a subspace of a real Banach space $ X$ such that $ X/Y$ admits an equivalent LUR norm, then $ X$ admits an equivalent LUR (strictly convex) norm provided $ Y$ also does.


References [Enhancements On Off] (What's this?)

  • [1] G. A. Alexandroff, Locally uniformly convex equivalent norms in nonseparable Banach spaces, Ph. D. thesis, Ckarkov, 1980.
  • [2] C. Bessaga and A. Pełczynski, Selected topics in infinite dimensional topology, Polish Sci. Publ., Warsaw, 1975. MR 0478168 (57:17657)
  • [3] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Math., Vol. 485, Springer-Verlag, New York, 1975. MR 0461094 (57:1079)
  • [4] P. Enflo, J. Lindenstrauss and G. Pisier, On the three-space problem, Math. Scand. 36 (1975), 199-210. MR 0383047 (52:3928)
  • [5] K. John and V. Zizler, On extension of rotund norms. II, Pacific J. Math. 82 (1979), 451-455. MR 551701 (81h:46009)
  • [6] W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219-230. MR 0417760 (54:5808)
  • [7] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and three-space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30. MR 542869 (82g:46021)
  • [8] G. Kothe, Topological vector spaces. I, Springer-Verlag, Berlin-Heidelberg-New York, 1969. MR 0248498 (40:1750)
  • [9] J. Lindenstrauss and Ch. Stegall, Examples of separable spaces which do not contain $ {l_1}$ and whose duals are nonseparable, Studia Math. 54 (1975), 81-105. MR 0390720 (52:11543)
  • [10] J. Rainwater, Local uniform convexity of Day's norm on $ {c_0}(\Gamma )$, Proc. Amer. Math. Soc. 22 (1969), 335-339. MR 0243325 (39:4647)
  • [11] M. Talagrand, Renormages de quelques $ \mathcal{C}(K)$ (to appear).
  • [12] S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173-180. MR 0306873 (46:5995)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20

Retrieve articles in all journals with MSC: 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792277-X
Keywords: Renorming, locally uniformly rotund, three space problem
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society