Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The asymptotic-norming and the Radon-Nikodým properties are equivalent in separable Banach spaces


Authors: N. Ghoussoub and B. Maurey
Journal: Proc. Amer. Math. Soc. 94 (1985), 665-671
MSC: Primary 46B20; Secondary 46B22
DOI: https://doi.org/10.1090/S0002-9939-1985-0792280-X
MathSciNet review: 792280
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the asymptotic-norming and the Radon-Nikodym properties are equivalent, settling a problem of James and Ho [9]. In the process, we give a positive solution to two questions of Edgar and Wheeler [6] concerning Cech-complete Banach spaces. We also show that a separable Banach space with the Radon-Nikodym property semi-embeds in a separable dual whenever it has a norming space not containing an isomorphic copy of $ {l_1}$. This gives a partial answer to a problem of Bourgain and Rosenthal [3].


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, Sets with the Radon-Nikodym property in conjugate Banach spaces, Studia Math. 66 (1978), 199-205. MR 579734 (81h:46014)
  • [2] J. Bourgain and F. Delbaen, A special class of $ {\mathcal{L}^\infty }$-spaces, Acta Math. 145 (1980), 155-176. MR 590288 (82h:46023)
  • [3] J. Bourgain and H. P. Rosenthal, Applications of the theory of semi-embeddings to Banach space theory, J. Funct. Anal. 52 (1983), 149-188. MR 707202 (85g:46018)
  • [4] W. Davis, N. Ghoussoub and J. Lindenstrauss, A lattice renorming theorem and applications to vector-valued processes, Trans. Amer. Math. Soc. 263 (1981), 531-540. MR 594424 (83d:46023)
  • [5] W. Davis and W. B. Johnson, A renorming of non-reflexive Banach spaces, Proc. Amer. Math. Soc. 37 (1973), 486-487. MR 0310595 (46:9693)
  • [6] C. A. Edgar and R. F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), 317-350. MR 765190 (86e:46013)
  • [7] N. Ghoussoub and B. Maurey, $ {G_\delta }$-embeddings in Hilbert space, J. Funct. Anal. (to appear). MR 779739 (86m:46016)
  • [8] -, $ {H_\delta }$-embeddings in Hilbert space and optimization on $ {G_\delta }$-sets, Mem. Amer. Math. Soc. (to appear).
  • [9] R. C. James and A. Ho, The asymptotic-norming and Radon-Nikodym properties for Banach spaces, Ark. Mat. 19 (1981), 53-70. MR 625537 (82i:46033)
  • [10] W. B. Johnson and Y. Lindenstrauss, Examples of $ {\mathcal{L}^1}$-spaces, Ark. Mat. 18 (1980), 101-106. MR 608329 (82e:46025)
  • [11] J. Neveu, Discrete parameter martingales, North-Holland, Amsterdam, 1975. MR 0402915 (53:6729)
  • [12] T. Odell and H. P. Rosenthal, A double dual characterization of separable Banach spaces containing $ {l_1}$, Israel J. Math. 20 (1975), 375-384. MR 0377482 (51:13654)
  • [13] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces. II, Trans. Amer. Math. Soc. 264 (1981), 507-519. MR 603779 (82k:46030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 46B22

Retrieve articles in all journals with MSC: 46B20, 46B22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792280-X
Keywords: Asymptotic-norming and Radon-Nikodym properties, semi-embeddings
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society