THE HUREWICZ IMAGE OF RAY'S ELEMENTS IN MSP_*

STANLEY O. KOCHMAN

Abstract. In this paper we determine an explicit formula for the symplectic Hurewicz homomorphism of Nigel Ray's sequence of torsion elements in the symplectic bordism ring.

Nigel Ray [7] defined a sequence of elements $\theta_n \in \pi_{4n-3} MSP$ of order two. Ray conjectured that the θ_{2n-1}, $n \geq 2$, are zero, and Fred Roush has an unpublished and unavailable proof of this conjecture. On the other hand, Ray proved that $\phi_0 = \theta_1$ and the $\phi_n = \theta_{2n}$, $n \geq 1$, are all nonzero. This sequence of elements has played a central role in all recent computations involving the torsion elements of $\pi_\ast MSP$ either to describe them [3, 4, 6] or to eliminate them [8]. The underlying reason is that all torsion elements of $\pi_\ast MSP$ can be organized into sequences called families which are constructed from the ϕ_n using Massey products. The details can be found in [4, §9]. Ray proved that $\{\theta_n | n \geq 1\}$ is closed under the Landweber-Novikov operations. From [4, §9] it follows that each family is closed under the Landweber-Novikov operations, at least modulo the Adams filtration. This gives rise to the following inductive procedure for computing differentials in the Adams spectral sequence for $\pi_\ast MSP$ [3] and in the Atiyah-Hirzebruch spectral sequences for $\pi^2 MSP(0)$ [2] and $\pi^2 MSP$ [6]. The Landweber-Novikov operations induce degree lowering operations on these spectral sequences which commute with the differentials. Thus, if one inducts on the degree of members X of a fixed family, it often happens that $d_r(X)$ is determined from the knowledge of $S_E d_r(X)$ for Landweber-Novikov operations S_E. By the construction of families in [4, §9] it follows that if we knew how the S_E act on the ϕ_n then we would know how the S_E act on all families. In summary, current methods of computing with $\pi_\ast MSP$ rely on ad hoc calculations of $S_E(\phi_n)$ for special cases of E.

In this paper we determine explicit formulas for $S_E(\theta_n)$ for all Landweber-Novikov operations S_E. Equivalently, we determined $h(\theta_n)$, where $h: \pi_\ast MSP \to MSP_\ast MSP$ is the Hurewicz homomorphism. Recall [1] that $MSP_\ast MSP(1)$ has a canonical $\pi_\ast MSP$-basis $\{1, b_0, b_1, \ldots, b_n, \ldots\}$, $\deg b_n = 4n$. Then the equation $h(x) = \Sigma E x_E b_E$ is equivalent to saying that the Landweber-Novikov operations on x are given by $S_E(x) = x_E$ for all E. Here $E = (e_1, \ldots, e_n)$, $b_E = b_1^{e_1} \cdots b_n^{e_n}$ and x, x_E are in $\pi_\ast MSP$.

Received by the editors June 27, 1984.
1980 Mathematics Subject Classification. Primary 55N22.

1 This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page
Recall that Kaoru Morisugi [6] proved the following recursive formula for $h(\theta_n)$:

$$
\sum_{k=1}^{n-1} B_{n-k}^k h(\theta_k) + h(\theta_n) = \sum_{j=1}^{n} (n - j + 1) b_{n-j} \theta_j,
$$

where $B = 1 + b_1 + \cdots + b_i + \cdots$ and B_{n-k}^k denotes the component of B^k of degree $4n - 4k$. Interpret (1) as a sequence of linear equations with unknowns $h(\theta_k)$ and constant terms

$$
\sum_{j=1}^{n} (n - j + 1) b_{n-j} \theta_j.
$$

The coefficient matrix C is lower triangular with ones on the diagonal and has (i, j)-entry $C_{ij} = B_{i-j}^j$ for $i > j$. We digress briefly to study C. Recall [1] that $\text{MSp} \star \text{MSp}$ is a Hopf algebra with coproduct Δ given by

$$
\Delta(B) = \sum_{t=0}^{\infty} B^{t+1} \otimes b_t.
$$

Thus for $i > j$,

$$
\Delta(C_{ij}) = \Delta(B)^{i-j}_j = \left(\sum_{t=0}^{\infty} B^{t+1} \otimes b_t \right)^{i-j}
$$

$$
= \left(\sum_{s_1, \ldots, s_j \geq 0} B_1^{s_1} \cdots B_j^{s_j} \otimes b_{s_1} \cdots b_{s_j} \right)^{i-j}
$$

$$
= \sum_{p=0}^{i-j} B_{i-j-p}^{s+p} \otimes B_p^j = \sum_{q=j}^{i} B_{q-j}^{s+q} \otimes B_{q-j}^j \quad \text{where} \quad q = p + j
$$

$$
= \sum_{q=j}^{i} C_{iq} \otimes C_{qj}.
$$

Thus by [5, Lemma 2.2], Cramer's rule applies to the system of linear equations (1) to determine the unique solution as

$$
h(\theta_n) = \sum_{j=1}^{n} \left[(n - j + 1) b_{n-j} + \sum_{k=0}^{n-j-1} (k + 1) b_k \chi(B) B_{n-j-k}^{j+k} \right] \theta_j.
$$

In this formula χ is the conjugation in the Hopf algebra $\text{MSp} \star \text{MSp}$. By [5, Lemma 2.3],

$$
\chi(B)^{i-j}_n = \sum_{r \geq 0} \sum_{n > q_r > \cdots > q_1 > t} (-1)^{r+1} B_{n-q_r}^{q_r} B_{q_{r-1}}^{q_{r-1}} \cdots B_{q_1}^{q_1} B_{q_1-t}^i.
$$

Taking $n = 2m$ in formula (2) we obtain

$$
h(\phi_m) = \sum_{i=1}^{m} \left[b_{2m-2i} + \sum_{h=0}^{m-i-1} b_{2h} \chi(B) B_{2m-2h-2i}^{2h+2i} \right] \phi_i
$$

$$
+ \sum_{j=1}^{m} \left[\sum_{k=0}^{m-j} b_{2k} \chi(B) B_{2m-2j-2k+1}^{2j+2k-1} \right] \phi_j.
$$
By Roush’s unpublished result that \(\theta_{2j-1} = 0 \) for \(j \geq 2 \),

\[
\begin{align*}
(4)' \quad h(\phi_m) &= \sum_{i=1}^{m} \left[b_{2m-2i} + \sum_{h=0}^{m-i-1} b_{2h} \chi(B)^{2h+2i} \right] \phi_i \\
&+ \sum_{k=0}^{m-1} b_{2k} \chi(B)^{2k+1} \phi_0.
\end{align*}
\]

On the other hand, one could take \(n = 2m - 1 \) in (2) to obtain

\[
(5) \quad h(\theta_{2m-1}) = \sum_{i=1}^{m} \left[b_{2m-2i} + \sum_{h=0}^{m-i-1} b_{2h} \chi(B)^{2h+2i-1} \right] \theta_{2i-1}.
\]

Note that we exclude the term \(i = 1 \) in this sum because

\[
b_{2m-2} + \sum_{h=0}^{m-2} b_{2h} \chi(B)^{2h+1} = 0.
\]

This is a consequence of the definition of \(\chi \) and

\[
\Delta(b_{2m-2}) = 1 \otimes b_{2m-2} + \sum_{h=0}^{m-2} B_{2m-2h-2} \otimes b_{2h}.
\]

Morisugi [6, Proposition 4.3] observed that the formula for \(h(\theta_{2m-1}) \) would not contain \(\theta_1 \) nor \(\theta_{2n}, n \geq 1 \). He denotes the coefficient of \(\theta_i \) in \(h(\theta_n) \) by \(f_i(n) \). In this notation we can rewrite (2) as

\[
(6) \quad f_i(n) = (n - i + 1) b_{n-i} + \sum_{k=0}^{n-i-1} (k + 1) b_k \chi(B)^{n-i-k}.
\]

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA

Current address: Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada