Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimum eigenvalues for positive, Rockland operators


Authors: A. Hulanicki, J. W. Jenkins and J. Ludwig
Journal: Proc. Amer. Math. Soc. 94 (1985), 718-720
MSC: Primary 22E30; Secondary 58G35
DOI: https://doi.org/10.1090/S0002-9939-1985-0792290-2
MathSciNet review: 792290
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a positive, Rockland operator of homogeneous degree $ \gamma $. The minimum eigenvalue of $ d\pi (L)$ increases as the $ \gamma $th power of the homogeneous distance from the origin of the orbit corresponding to $ \pi $.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E30, 58G35

Retrieve articles in all journals with MSC: 22E30, 58G35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792290-2
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society