Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isolated chain recurrent points for one-dimensional maps


Authors: Louis Block and John E. Franke
Journal: Proc. Amer. Math. Soc. 94 (1985), 728-730
MSC: Primary 58F08; Secondary 54H20, 58F20
DOI: https://doi.org/10.1090/S0002-9939-1985-0792292-6
MathSciNet review: 792292
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a continuous map of the interval to itself or of the circle to itself, we show that any isolated chain recurrent point is eventually periodic. Furthermore, an isolated chain recurrent point which is not in the orbit of a critical point and has no critical point in its orbit is periodic.


References [Enhancements On Off] (What's this?)

  • [1] L. Block, Diffeomorphisms obtained from endomorphisms, Trans. Amer. Math. Soc. 214 (1975), 403-413. MR 0388457 (52:9293)
  • [2] -, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580. MR 509258 (81m:58063)
  • [3] L. Block, E. M. Coven, I. Mulvey and Z. Nitecki, Homoclinic and nonwandering points for maps of the circle, Ergodic Theory Dynamical Systems 3 (1983), 521-532. MR 753920 (86b:58101)
  • [4] L. Block and J. Franke, The chain recurrent set for maps of the interval, Proc. Amer. Math. Soc. 87 (1983), 723-727. MR 687650 (84j:58103)
  • [5] E. M. Coven and Z. Nitecki, Nonwandering sets of the powers of maps of the interval, Ergodic Theory Dynamical Systems 1 (1981), 9-31. MR 627784 (82m:58043)
  • [6] Z. Nitecki, Differentiable dynamics: an introduction to the orbit structure of diffeomorphisms, MIT Press, Cambridge, Mass., 1971. MR 0649788 (58:31210)
  • [7] L. S. Young, A closing lemma on the interval, Invent. Math. 54 (1979), 179-187. MR 550182 (80k:58084)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F08, 54H20, 58F20

Retrieve articles in all journals with MSC: 58F08, 54H20, 58F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792292-6
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society