RELATIVE LUBIN-TATE GROUPS
EHUD DE SHALIT

ABSTRACT. We construct a class of formal groups that generalizes Lubin-
Tate groups. We formulate the major properties of these groups and indicate
their relation to local class field theory.

The aim of this note is to introduce a certain family of formal groups generalizing
Lubin-Tate groups. Although the construction, basic properties and relation with
local class field theory are all similar to Lubin-Tate theory, the author is unaware
of previous references to these groups. We remark, however, that they are comple-
mentary in some sense to the formal groups studied by Honda in [2]. Since we want
to keep this note short, all the proofs are omitted. The reader who is acquainted
with Lubin-Tate theory as in [4 or 5] will be able to supply them without any
difficulties.

I would like to acknowledge my debt to K. Iwasawa. His beautiful exposition of
local class field theory [3] motivated this note.

1. Let \(k \) be a finite extension of \(\mathbb{Q}_p \), \(\nu: k^\times \to \mathbb{Z} \) the normalized valuation
(normalized in the sense that \(\nu(k^\times) = \mathbb{Z} \)), \(\mathcal{O} \) and \(\mathfrak{p} \) its ring of integers and maximal
ideal, and \(\overline{k} = \mathcal{O}/\mathfrak{p} \) the residue field, a finite field of characteristics \(p \) and \(q \) elements.
\(k_{\text{algs}} \) denotes an algebraic closure of \(k \) and \(k_{\text{ur}} \) the maximal unramified extension of
\(k \) in it. We also fix a completion of \(k_{\text{algs}} \), \(\Omega \), and let \(K \) be the closure of \(k_{\text{ur}} \) in it.
We write \(\varphi \) for the Frobenius automorphism of \(k_{\text{ur}}/k \), characterized by \(\varphi(x) = x^q \mod \mathfrak{p} \),
for all \(x \in \mathcal{O}_{k_{\text{ur}}} \). It extends by continuity to an automorphism of \(K/k \),
still denoted by \(\varphi \). If \(k' \) is another finite extension of \(\mathbb{Q}_p \), the corresponding objects
will be denoted by \(' \), e.g. \(\varphi', q' \), etc.

If \(A \) is any ring, \(A[[X_1, \ldots, X_n]] \) will denote the power series ring in \(X_i \). If \(f \) and
\(g \) are elements of it, \(f \equiv g \mod \deg m \) means that the power series \(f - g \) involves
only monomials of degree at least \(m \).

2. Fix the field \(k \). For each integer \(d \) let \(\Sigma_d \) be the set of all \(\xi \in k \), \(\nu(\xi) = d \).
Fix also \(d > 0 \) and let \(k' \) be the unique unramified extension of \(k \) of degree \(d \). Let
\(\xi \in \Sigma_d \) and consider

\[\mathcal{F}_\xi = \{ f \in \mathcal{O}'[[X]] \mid f \equiv \pi' X \mod \deg 2, \ N_{k'/k}(\pi') = \xi \text{ and } f \equiv X^q \mod \mathfrak{p}' \} .\]

Theorem 1. For each \(f \in \mathcal{F}_\xi \) there is a unique one-dimensional commutative
formal group law \(F_f \in \mathcal{O}'[[X, Y]] \) satisfying \(F_f^\varphi \circ f = f \circ F_f \). In others words, \(f \) is
a homomorphism of \(F_f \) to \(F_f^\varphi \).

Received by the editors March 2, 1984.
1980 Mathematics Subject Classification. Primary 12B25.
Key words and phrases. Formal groups, class field theory.
Note that if \(f \in \mathcal{F}_\xi \), \(f^\varphi \in \mathcal{F}_\xi \) also, and necessarily \(F_f^\varphi = F_{\varphi(f)} \). If \(d = 1 \), we are in the situation considered by Lubin and Tate. In general, we call \(F_f \) a relative Lubin-Tate group (relative to the extension \(k'/k \)).

3.

THEOREM 2. Let \(f = \pi'X + \cdots, g = \pi''X + \cdots \) be in \(\mathcal{F}_\xi \). Let \(a \in \mathcal{O}' \) be an element for which \(\alpha^\varphi = \alpha''/\alpha' \). Then there exists a unique power series \([a]_{f,g} \in \mathcal{O}'[[X]] \) for which

(i) \([a]_{f,g} = aX \mod \deg 2 \),

(ii) \([a]_{f,g} \circ f = g \circ [a]_{f,g} \).

\([a]_{f,g} \) is therefore in \(\text{Hom}(F_f, F_g) \). If \(h = \pi'''X + \cdots \) and \(b^\varphi = \pi''/\pi''' \), \([b]_{f,h} = [b]_{g,h} \circ [a]_{f,g} \). Moreover, the map \(\alpha \mapsto [a]_{f,g} \) is an additive injective homomorphism from \(\{ \alpha \in \mathcal{O}' | \alpha^\varphi = \alpha''/\alpha' \} \) to \(\text{Hom}(F_f, F_g) \). If \(f = g \) it is a ring homomorphism \(\mathcal{O} \to \text{End}(F_f) \), \(\alpha \mapsto [a]_f = [a]_{f,f} \).

COROLLARY. If \(f, g \in \mathcal{F}_\xi \), \(F_f \) and \(F_g \) are isomorphic.

4. Pick \(\xi, \xi' \in \Sigma_d \) and set \(v = \xi/\xi' \). Let \(u \) be a unit of \(k' \) such that \(N_{k'/k}(u) = v \), \(\theta_1 \in K \) such that \(\theta_1 \theta_1^{-1} = \xi/\xi' \), and \(f \in \mathcal{F}_\xi \).

THEOREM 3. There exists a unique power series \(\theta(X) \in \mathcal{O}_K[[X]] \) satisfying

(i) \(\varphi(\theta) = \theta \circ [v]_f \),

(ii) \(\theta(X) \equiv \theta_1 X \mod \deg 2 \).

Put \(f' = \varphi^\varphi \circ f \circ \theta^{-1} \). Then \(f' \in \mathcal{F}_\xi \), and \(\theta \) is an isomorphism of \(F_f \) onto \(F_{f'} \) over \(\mathcal{O}_K \).

5.

DEFINITION. For \(i \geq 0 \) and \(f \in \mathcal{F}_\xi \), let \(f^{(i)} = \varphi^{i-1}(f) \circ \cdots \circ \varphi(f) \circ f \). Then \(f^{(i)} \in \text{Hom}(F_f, F_f^\varphi) \) and (if \(\xi \in \Sigma_d \)) \(f^{(d)} = [\xi]_f \in \text{End}(F_f) \). Note also that \(\varphi^i(f^{(i)}) \circ f^{(j)} = f^{(i+j)} \).

Let \(M \) be the valuation ideal of \(\Omega \), and \(M_f \) the commutative group whose underlying set is \(\mathcal{M} \) and the addition is given by \(F_f \). With \(\xi \in \Sigma_d, f \in \mathcal{F}_\xi \) and \(\pi \) a prime element of \(\mathcal{O} \), define for any \(n \geq 0 \)

\[
W_f^n = \{ \alpha \in M_f | [a]_f(\alpha) = 0 \text{ for all } a \in \varphi^{n+1} \}
= \{ \alpha \in M_f | [\varphi^{n+1}]_f(\alpha) = 0 \}
= \text{Ker}(f^{(n+1)}: M_f \to M^{\varphi^{n+1}}(f)).
\]

PROPOSITION 1. (i) \(W_f^n \) is a finite sub-\(\mathcal{O} \)-module of \(M_f \) and has \(q^{n+1} \) elements. \(W_f^n \subseteq W_f^{n+1} \).

(ii) If \(\alpha \in W_f^n \) but \(\alpha \not\in W_f^{n-1} \), then \(\alpha \mapsto [a]_f(\alpha) \) gives an isomorphism \(\mathcal{O}/\varphi^{n+1} \cong W_f^n \).

(iii) \(W_f = \bigcup W_f^n \cong k/\mathcal{O} \) (noncanonically) and is the set of all \(\mathcal{O} \)-torsion in \(M_f \).

6. Coleman’s norm operator (see [1]). Let \(R = \mathcal{O}'[[X]], \xi \in \Sigma_d \), and \(f \in \mathcal{F}_\xi \).

PROPOSITION 2. There exists a unique multiplicative operator \(\mathcal{N}: R \to R \) (\(\mathcal{N} = \mathcal{N}_f \), to emphasize the dependence on \(f \)), such that

\[
(\mathcal{N} h) \circ f(X) = \prod_{a \in W_f^0} h(X[+_f a]) \forall h \in R.
\]
It enjoys the additional properties:

(i) $\mathcal{N}h \equiv h^p \mod p'$,
(ii) $\mathcal{N}_f \varphi = \varphi \circ \mathcal{N}_f \circ \varphi^{-1}$, i.e. $\mathcal{N}_f \varphi(h^p) = (\mathcal{N}_f h)^p$,
(iii) Let $\mathcal{N}^{(i)}_f h = \mathcal{N}_{\varphi^{-1}(f)} \circ \cdots \circ \mathcal{N}_{\varphi(f)} \circ \mathcal{N}_f(h)$.

Then

$$(\mathcal{N}^{(i)}_f h) \circ f^{(i)}(X) = \prod_{\alpha \in W^{i-1}_f} h(X^{\alpha})$$

(iv) If $h \in R$ and $h \equiv 1 \mod \varphi^i$ ($i \geq 1$), then $\mathcal{N}h \equiv 1 \mod \varphi^{i+1}$.

7.

Proposition 3. The field $k'(W^f_j)$ is the same for all $f \in \mathcal{F}_\xi$. Call it k'^{ξ}, and put $k^{\xi-1}_\xi = k'$. Then for $n \geq 0$, $k^{\xi n}_\xi$ is a totally ramified extension of k' of degree $(q-1)q^n$, and it is abelian over k. Any α in W^{n}_f but not in W^{n-1}_f, for any $f \in \mathcal{F}_\xi$, generates $k^{\xi n}_\xi$ over k' and is a prime element for it.

Much more can be said about those fields (see §10).

8. Coleman power series [1].

Theorem 4. Fix $\xi \in \Sigma_d$, $f \in \mathcal{F}_\xi$ and $\alpha \in W^{n-1}_f$, $\alpha \not\in W^{n-1}_{\varphi^{-1}(f)}$. For $0 \leq i \leq n$ let $\alpha_i = (\varphi^{-i}(f))^{(n-i)}(\alpha) = \varphi^{-i-1}(f) \circ \cdots \circ \varphi^{-i}(f)(\alpha) \in W^{i-1}_{\varphi^{-i}(f)}$. Let c be a unit of $k^{\xi n}_\xi$ and $c_i = N_{n,i}(c)$ ($N_{n,i}$ denoting the norm from $k^{\xi n}_\xi$ to $k^{\xi i}_\xi$). Then there is a power series g in R such that

$$\varphi^{-i}(g)(\alpha_i) = c_i \quad (0 \leq i \leq n).$$

Corollary. Suppose α_i is an element of $W^{i-1}_{\varphi^{-i}(f)}$ not in $W^{i-1}_{\varphi^{-i-1}(f)}$ ($i \geq 0$) and $f^{\varphi^{-i}}(\alpha_{i+1}) = \alpha_{i+1}$. Suppose also c_0, c_1, \ldots is a norm-compatible sequence of units in $k^{\xi n}_\xi$, i.e. $N_{n,i}(c_n) = c_i$. Then there exists a unique g in R such that $g^{\varphi^{-i}}(\alpha_i) = c_i$ for all i.

9.

Example. Let K be a quadratic imaginary field, let F be a finite extension of K, and let E be an elliptic curve defined over F with complex multiplication by the full ring of integers of K. As explained in [6], if we choose a Weierstrass model of E over the integers of F we get a formal group law $\hat{E}(X, Y)$ defined over the ring generated (over \mathbb{Z}) by the coefficients in the Weierstrass equation. Let p be a prime of K and P a prime of F dividing p. Assume E has good reduction at P, and that P is not ramified in F/K. It is then a consequence of the theory of complex multiplication that \hat{E}, as a formal group defined over \mathcal{O}_P (the integers of F_P), is a relative Lubin-Tate group with respect to the (unramified) extension F_P/K_p.

10. The relation between Lubin-Tate groups and local class field theory can now be easily generalized. A full description of it (and actually derivation of local class field theory from the formal group point of view) can be found in [3]. We only make the following remarks. The fields $k_\xi = \bigcup k^{\xi n}_\xi = k'(W^f_j)$ (for any $f \in \mathcal{F}_\xi$) are the maximal abelian extensions of k with residue field equal to the extension of degree d of \bar{k}. They are distinct for different ξ as can be seen from the observation that the group of universal norms from k_ξ to k is just the cyclic group generated by ξ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If $\xi \in \Sigma_1^d$, i.e. is a dth power in k, then \mathcal{F}_ξ contains an f from $\mathcal{O}[[X]]$. In this case $k\xi$ is the compositum of a totally ramified extension of k and k'. However, this is not always the case, because $\Sigma_d \neq \Sigma_1^d$ in general.

REFERENCES

Department of Mathematics, Fine Hall, Princeton University, Princeton, New Jersey 08540

Current address: Department of Mathematics, Science Center, 1 Oxford Street, Harvard University, Cambridge, Massachusetts 02138