SOME ALGEBRAIC SETS OF HIGH LOCAL COHOMOLOGICAL
DIMENSION IN PROJECTIVE SPACE

GENNADY LYUBEZNIK

Abstract. Let \(V_0, \ldots, V_{\lfloor n/t \rfloor} \) be algebraic sets of pure codimension \(t \) in \(P^n \), and suppose \(\bigcap V_i \) is empty. Then \(P^n - \bigcup V_i \) has cohomological dimension \(n - \lfloor n/t \rfloor \).

If \(U \) is a scheme, then \(\text{cd}(U) \), the cohomological dimension of \(U \), is the largest integer \(i \) such that there exists a quasi-coherent sheaf \(F \) on \(U \) such that \(H^i(F) \neq 0 \).

In [1], G. Faltings proved that if \(V \) is an algebraic set of pure codimension \(t \) in \(P^n \), then

\[
\text{cd}(P^n - V) \leq n - \lfloor n/t \rfloor.
\]

This note gives some algebraic sets for which equality holds in (1).

Theorem. Put \(s = \lfloor n/t \rfloor \) and let \(V = V_0 \cup V_1 \cup \cdots \cup V_s \) be the union of \(s + 1 \) algebraic sets of pure codimension \(t \) in general position in \(P^n \) (i.e. such that the intersection of all of them is empty). Then

\[
\text{cd}(P^n - V) = n - \lfloor n/t \rfloor.
\]

This theorem (from the author’s thesis [4]) answers the conjecture from [3] in the affirmative and covers all three examples from [3], but not the statement of the main theorem.

For a proof it is convenient to translate the problem into an algebraic language. Put \(R_n = k[x_0, \ldots, x_n] \) and let \(\mathfrak{A} \) be the defining ideal of \(V \) in \(R_n \). Then the cohomological dimension of \(P^n - V \) is the largest integer \(i \) such that \(H^{i+1}(\mathfrak{A}) \neq 0 \) (cf. [2]).

Lemma. Put \(s = \lfloor n/t \rfloor \) and let \(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_j \) be \(j + 1 \) homogeneous ideals of pure height \(t \) in \(R_n \). Put \(\beta_j = \sum_{i=0}^{s} \mathfrak{A}_i \). Then \(H_i^{\beta_j}(R_n) = 0 \) if \(i \geq n - s + j + 2 \).

Proof. If \(j = 0 \), the result follows from (1). Put \(\beta_{j-1} = \sum_{i=0}^{s-1} \mathfrak{A}_i \). Then \(\beta_{j-1} \cap \mathfrak{A}_j \) has the same radical as \(\gamma_{j-1} = \sum_{i=0}^{s-1} (\mathfrak{A}_i \cap \mathfrak{A}_j) \). Since \(\beta_{j-1} \) and \(\gamma_{j-1} \) are sums of \(j - 1 \) ideals of pure heights \(i \) in \(R_n \), we may assume that \(H_i^{\beta_{j-1}}(R_n) = H_i^{\gamma_{j-1}}(R_n) = 0 \) for all \(i \geq n - s + j + 1 \). We also know that \(H_i^{\mathfrak{A}_j}(R_n) = 0 \) if \(i \geq n - s + 2 \). The Mayer-Vietoris long exact sequence gives

\[
H_{\gamma_{j-1}}^{i+1}(R_n) \to H_{\beta_{j-1}}^{i+1}(R_n) \to H_{\beta_{j-1}}^{i+1}(R_n) \oplus H_{\mathfrak{A}_j}^{i+1}(R_n)
\]

and this proves the Lemma.
Proof of the Theorem. Let \(\mathfrak{A}_0, \ldots, \mathfrak{A}_s \) be the defining ideals of \(V_0, \ldots, V_s \) in \(R_n \). Put \(\mathfrak{S}_j = \mathfrak{A}_0 \cap \cdots \cap \mathfrak{A}_j + \mathfrak{A}_{j+1} + \cdots + \mathfrak{A}_s \). Then the biggest integer \(i \) for which \(H^i_{\mathfrak{S}_j}(R_n) \neq 0 \) is \(i = n - j + 1 \). We are going to prove this by induction on \(j \) and the theorem will follow by putting \(j = s \).

For \(j = 0 \), \(\mathfrak{S}_j \) is \(m \)-primary, where \(m \) is the maximal ideal of \(R_n \) and the above claim is well known in this case. Assume \(j > 0 \) and assume the Theorem proven for \(j - 1 \). Put \(\mathfrak{A}' = \mathfrak{A}_j + \mathfrak{A}_{j+1} + \cdots + \mathfrak{A}_s \) and \(\mathfrak{A}'' = \mathfrak{A}_0 \cap \mathfrak{A}_1 \cap \cdots \cap \mathfrak{A}_{j-1} + \mathfrak{A}_{j+1} + \mathfrak{A}_{j+2} + \cdots + \mathfrak{A}_s \). Then \(\mathfrak{S}_j = \mathfrak{A}' \cap \mathfrak{A}'' \) and \(\mathfrak{S}_{j-1} = \mathfrak{A}' + \mathfrak{A}'' \). By the Lemma \(H^i_{\mathfrak{S}_j}(R_n) = H^i_{\mathfrak{S}_{j-1}}(R_n) = 0 \) for all \(i \geq n - j + 2 \). The claim now follows from the Mayer-Vietoris sequence considering the induction hypothesis. Q.E.D.

Remark. The above Lemma gives a lower bound on the number of algebraic sets of given codimension which are needed to cut out a given algebraic subset of \(\mathbb{P}^n \) set-theoretically. Namely, if \(V \subset \mathbb{P}^n \) and \(\text{cd}(\mathbb{P}^n - V) = v \), then we need at least \(v + 1 - (n - \lfloor n/t \rfloor) \) algebraic subsets of pure codimension \(t \) to cut out \(V \) set-theoretically.

Faltings’ inequality (1) and the fact that it is exact for all \(n \) and \(t \) (our Theorem) suggest the following.

Conjecture. Every algebraic subset of \(\mathbb{P}^n \) of pure codimension \(t \) is a set-theoretic intersection of \(n + 1 - \lfloor n/t \rfloor \) hypersurfaces [4, p. 8].

For additional supporting evidence for this conjecture see [4, Theorem 6].

References

Department of Mathematics, Columbia University, New York, New York 10027

Current address: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907