SOME ALGEBRAIC SETS OF HIGH LOCAL COHOMOLOGICAL DIMENSION IN PROJECTIVE SPACE

GENNADY LYUBEZNK

Abstract. Let $V_0, \ldots, V_{[n/t]}$ be algebraic sets of pure codimension t in P^n, and suppose $\bigcap V_i$ is empty. Then $P^n - \bigcup V_i$ has cohomological dimension $n - [n/t]$.

If U is a scheme, then $\text{cd}(U)$, the cohomological dimension of U, is the largest integer i such that there exists a quasi-coherent sheaf F on U such that $H^i(F) \neq 0$.

In [1], G. Faltings proved that if V is an algebraic set of pure codimension t in P^n, then

$$\text{cd}(P^n - V) \leq n - [n/t].$$

This note gives some algebraic sets for which equality holds in (1).

Theorem. Put $s = [n/t]$ and let $V = V_0 \cup V_1 \cup \cdots \cup V_s$ be the union of $s + 1$ algebraic sets of pure codimension t in general position in P^n (i.e. such that the intersection of all of them is empty). Then

$$\text{cd}(P^n - V) = n - [n/t].$$

This theorem (from the author’s thesis [4]) answers the conjecture from [3] in the affirmative and covers all three examples from [3], but not the statement of the main theorem.

For a proof it is convenient to translate the problem into an algebraic language. Put $R_n = k[x_0, \ldots, x_n]$ and let \mathfrak{A} be the defining ideal of V in R_n. Then the cohomological dimension of $P^n - V$ is the largest integer i such that $H^i(R_n) \neq 0$ (cf. [2]).

Lemma. Put $s = [n/t]$ and let $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_j$ be $j + 1$ homogeneous ideals of pure height t in R_n. Put $\beta_j = \Sigma_{r=0}^{\infty} \mathfrak{A}_r$. Then $H^i_{\beta_r}(R_n) = 0$ if $i \geq n - s + j + 2$.

Proof. If $j = 0$, the result follows from (1). Put $\beta_{j-1} = \Sigma_{r=0}^{\infty} \mathfrak{A}_r$. Then $\beta_{j-1} \cap \mathfrak{A}_j$ has the same radical as $\gamma_{j-1} = \Sigma_{r=0}^{\infty} (\mathfrak{A}_r \cap \mathfrak{A}_j)$. Since β_{j-1} and γ_{j-1} are sums of $j - 1$ ideals of pure heights t in R_n, we may assume that $H^i_{\beta_{j-1}}(R_n) = H^i_{\gamma_{j-1}}(R_n) = 0$ for all $i \geq n - s + j + 1$. We also know that $H^i_{\beta_j}(R_n) = 0$ if $i \geq n - s + 2$. The Mayer-Vietoris long exact sequence gives

$$H^i_{\gamma_{j-1}}(R_n) \rightarrow H^i_{\beta_{j-1}}(R_n) \rightarrow H^i_{\beta_j}(R_n) \oplus H^i_{\beta_j}(R_n)$$

and this proves the Lemma.

Received by the editors April 5, 1984.
1980 Mathematics Subject Classification. Primary 14B15, 13D03.

1985 American Mathematical Society
0002-9939/85 $1.00 +$.25 per page
Proof of the Theorem. Let \(\mathfrak{A}_0, \ldots, \mathfrak{A}_s \) be the defining ideals of \(V_0, \ldots, V_s \) in \(R_n \). Put \(\mathfrak{E}_j = \mathfrak{A}_0 \cap \mathfrak{A}_1 \cap \cdots \cap \mathfrak{A}_j + \mathfrak{A}_{j+1} + \cdots + \mathfrak{A}_s \). Then the biggest integer \(i \) for which \(H^n_{\mathfrak{E}_j}(R_n) \neq 0 \) is \(i = n - j + 1 \). We are going to prove this by induction on \(j \) and the theorem will follow by putting \(j = s \).

For \(j = 0 \), \(\mathfrak{E}_j \) is \(m \)-primary, where \(m \) is the maximal ideal of \(R_n \) and the above claim is well known in this case. Assume \(j > 0 \) and assume the Theorem proven for \(j - 1 \). Put \(\mathfrak{A}' = \mathfrak{A}_j + \mathfrak{A}_{j+1} + \cdots + \mathfrak{A}_s \) and \(\mathfrak{A}'' = \mathfrak{A}_0 \cap \mathfrak{A}_1 \cap \cdots \cap \mathfrak{A}_{j-1} + \mathfrak{A}_{j+1} + \mathfrak{A}_{j+2} + \cdots + \mathfrak{A}_s \). Then \(\mathfrak{E}_j = \mathfrak{A}' \cap \mathfrak{A}'' \) and \(\mathfrak{E}_{j-1} = \mathfrak{A}' + \mathfrak{A}'' \). By the Lemma \(H^n_{\mathfrak{E}_j}(R_n) = H^n_{\mathfrak{A}''}(R_n) = 0 \) for all \(i \geq n - j + 2 \). The claim now follows from the Mayer-Vietoris sequence considering the induction hypothesis. Q.E.D.

Remark. The above Lemma gives a lower bound on the number of algebraic sets of given codimension which are needed to cut out a given algebraic subset of \(\mathbb{P}^n \) set-theoretically. Namely, if \(V \subset \mathbb{P}^n \) and \(\text{cd}(\mathbb{P}^n - V) = v \), then we need at least \(v + 1 - (n - \lfloor n/t \rfloor) \) algebraic subsets of pure codimension \(t \) to cut out \(V \) set-theoretically.

Faltings' inequality (1) and the fact that it is exact for all \(n \) and \(t \) (our Theorem) suggest the following.

Conjecture. Every algebraic subset of \(\mathbb{P}^n \) of pure codimension \(t \) is a set-theoretic intersection of \(n + 1 - \lfloor n/t \rfloor \) hypersurfaces \([4, \text{p. 8}]\).

For additional supporting evidence for this conjecture see \([4, \text{Theorem 6}]\).

References

Department of Mathematics, Columbia University, New York, New York 10027

Current address: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907