Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On almost everywhere convergence of Bochner-Riesz means in higher dimensions


Author: Michael Christ
Journal: Proc. Amer. Math. Soc. 95 (1985), 16-20
MSC: Primary 42B25; Secondary 47G05
DOI: https://doi.org/10.1090/S0002-9939-1985-0796439-7
MathSciNet review: 796439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In $ {{\mathbf{R}}^n}$ define $ ({T_{\lambda ,r}}f)(\xi ) = \hat f(\xi )(1 - \left\vert {{r^{ - 1}}{\xi ^2}} \right\vert)_ + ^\lambda $. If $ n \geq 3$, $ \lambda > \tfrac{1}{2}(n - 1)/(n + 1)$ and $ 2 \leq p < 2n/(n - 1 - 2\lambda )$, then $ {\lim _{r \to \infty }}{T_{\lambda ,r}}f(x) = f(x)$ a.e. for all $ f \in {L^p}({{\mathbf{R}}^n})$.


References [Enhancements On Off] (What's this?)

  • [1] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $ {L^4}({{\mathbf{R}}^2})$, Duke Math. J. 50 (1983), 409-416. MR 705033 (84m:42025)
  • [2] -, A weighted inequality for the maximal Bochner-Riesz operator on $ {{\mathbf{R}}^2}$, Trans. Amer. Math. Soc. 287 (1985), 673-680. MR 768732 (86d:42017)
  • [3] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299. MR 0361607 (50:14052)
  • [4] M. Christ, Convolution estimates for Cantor-Lebesgue measures, Preprint.
  • [5] C. Fefferman, Inequalities for strongly singular convolution operators, Acta. Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • [6] -, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 0320624 (47:9160)
  • [7] C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. MR 0063477 (16:127b)
  • [8] J. L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Proc. Conf. Harmonic Analysis, Minneapolis, 1981, Lecture Notes in Math., vol. 908, Springer-Verlag, Berlin and New York, 1982, pp. 86-101. MR 654181 (83h:42025)
  • [9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [10] P. Tomas, Restriction theorems for the Fourier transform, Harmonic Analysis in Euclidean Space (G. Weiss and S. Wainger, Eds.), Proc. Sympos. Pure Math., Vol. 35, Part I, Amer. Math. Soc., Providence, R.I., 1979, pp. 111-114. MR 545245 (81d:42029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 47G05

Retrieve articles in all journals with MSC: 42B25, 47G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0796439-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society