ON SUCCESSIVE COEFFICIENTS OF UNIVALENT FUNCTIONS

HU KE

ABSTRACT. Let $f(z) \in S$, that is, $f(z)$ is analytic and univalent in the unit disk $|z| < 1$, normalized by $f(0) = f'(0) - 1 = 0$. Let p be real and

$$\{f(z)/z\}^p = 1 + \sum_{n=1}^{\infty} D_n(p)z^n.$$

Lucas proved that

$$||D_n(p)\| - \|D_{n+1}(p)\|| \leq An^{(t(p)-1)/2} \log^{3/2} n, \quad n = 2, 3, \ldots,$$

for some absolute constant A and $t(p) = (2\sqrt{p} - 1)^2$. In this paper we improve $t(p)$ as follows:

$$T(p) = \frac{4p - 1}{2p + t(p)} t(p).$$

Let the function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S$, and

$$F_p(z) = \left\{\frac{f(z)}{z}\right\}^p = 1 + \sum_{n=1}^{\infty} D_n(p)z^n.$$

It is a very interesting problem to find a best possible number $t(p)$ for which the inequality

$$||D_n(p)\| - \|D_{n-1}(p)\|| \leq An^{(t(p)-1)/2}$$

holds, where A is an absolute constant.

This problem was first studied by Goluzin. In 1963 Hayman obtained a precise result $t(1) = 1$. In 1956 the author [2] proved that $t(p) = 2p - 1$ ($0 < p < 1$) for $f \in S^*$. In the general case, the better result $t(p) = (2\sqrt{p} - 1)^2$ ($\frac{1}{4} < p < 1$) is due to Lucas [1].

THEOREM. Let $f(z) \in S$, and $F_p(z) = \{f(z)/z\}^p = 1 + \sum_{n=1}^{\infty} D_n(p)z^n$. Then for every $p \in \left(\frac{1}{4}, 1\right]$, we have

$$||D_n(p)\| - \|D_{n-1}(p)\|| \leq An^{(T(p)-1)/2} \log^{3/2} n, \quad n = 2, 3, \ldots,$$

where A is an absolute constant, and

$$T(p) = \frac{4p - 1}{2p + t(p)} t(p), \quad t(p) = (2\sqrt{p} - 1)^2.$$

This estimate is obviously better than Lucas’s because $(4p - 1)/(2p + t(p)) < 1$ for $\frac{1}{4} < p < 1$. Note that if $p = \frac{1}{2}$ then $zF_p(z^2)$ is an odd univalent function, and so on.

Received by the editors January 26, 1984 and, in revised form, September 18, 1984. Presented in May 1984 to the Complex Analysis Conference held in Gauzhou, China.

1980 Mathematics Subject Classification. Primary 30C50; Secondary 30C55.
1. **Lemmas.** We require some lemmas. In the following, A, A_1, A_2, \ldots will denote some absolute constants.

Lemma 1 [4]. Let $f(z) \in S$. Then

$$\int_0^{2\pi} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right|^2 d\theta \leq \frac{A}{1-r} \log \frac{1}{1-r}, \quad \frac{1}{2} \leq r < 1.$$

Lemma 2. Let $f(z) \in S$ and $F_p(z) = \{f(z)/z\}^p = 1 + \sum_{n=1}^{\infty} D_n(p) z^n$. Let p be given such that $\max_{|z|=\rho} |f(z)| = |f(\rho)|$. Then for every $p \in (\frac{1}{4}, 1]$ we have

$$|f'(re^{i\theta}) - \rho|^2 |F_p(re^{i\theta})|^2 \leq \begin{cases} 4r(1-\rho)^{2p}/(1-r)^{4p}, & 0 < \rho < r < 1, \\ 2^{3-2\sqrt{p}} r^2 - 2p r - t(p)/2/(1-r)(1-\rho)^{t(p)}, & 0 < r \leq \rho < 1, \end{cases}$$

where $t(p) = (2\sqrt{p} - 1)^2$.

Proof. By Goluzin's inequality [5]

$$\left| \frac{1 - \rho^2}{z - \rho} \right|^2 (1-\rho^2)x^2 (1-|z|^2)^2 x^2 \leq \begin{vmatrix} 1 \quad 1 \\ f(z) \quad f(\rho) \end{vmatrix}^2 \begin{vmatrix} \frac{1}{f^2(z)} \quad \frac{1}{f^2(\rho)} \end{vmatrix}^2 \frac{|\rho^2 f'(\rho)|}{t(p)} x^2,$$

where x_1, x_2 are real numbers.

The following inequalities are known:

$$|f/(s)/(f(s)| \leq (1 + |s|)/(1 - |s|), \quad |s| < 1,$$

(1.5) $t^{-1}(1-t)^2|f(t e^{i\theta})| \leq s^{-1}(1-s)^2|f(s e^{i\theta})|, \quad 0 < s \leq t < 1.$

From inequality (1.5) and the hypothesis that $0 < \rho \leq r < 1$ and $\max_{|z|=\rho} |f(z)| = |f(\rho)|$, it is easy to show

$$\frac{1}{f(re^{i\theta})} + \frac{1}{f(p)} \leq \frac{1}{f(re^{i\theta})} + \frac{1}{f(p)} \leq \frac{1}{f(re^{i\theta})} + \frac{(1-\rho)^2}{\rho(1-r)^2|f(re^{i\theta})|} \leq 2r(1-\rho)^2.$$ \(1.6\)

We choose $x_1 = x_2 = \sqrt{p}$ in (1.3) and notice that $|z - \rho| \leq |1 - \rho^2|$ and $|z - \rho| \leq 2r$. Then from (1.4), (1.5), and (1.6) it is not difficult to deduce the first inequality in (1.2).

The second inequality in (1.2) [1] can also be obtained by putting $x_1 = 2\sqrt{p} - 1$, $x_2 = 1$ in (1.3). Thus the proof is complete.

Lemma 3. With the above assumption, we have

$$J(t) = \int_0^{2\pi} |te^{i\theta} - \rho|^2 \left| \frac{f'(te^{i\theta})}{f(te^{i\theta})} \right|^2 \left| f(te^{i\theta}) \right|^{2p} d\theta$$

$$\leq \begin{cases} \frac{A}{(1-t)^2(1-\rho)^{t(p)}} \log \frac{1}{1-r}, & 1/2 < t \leq \rho < 1, \\ \frac{A(1-\rho)^{2p}}{(1-t)^{4p+1}} \log \frac{1}{1-t}, & 1/2 < \rho \leq t < 1. \end{cases}$$

Proof. The proof follows from Lemmas 1 and 2.
LEMMA 4. With the above assumption, write

$$\varphi(z) = (\rho - z) \left\{ \frac{f(z)}{z} \right\}^p = \rho + \sum_{n=1}^{\infty} (\rho D_n(p) - D_{n-1}(p)) z^n.$$

Then

$$I(r) = \int_0^{2\pi} |\varphi(re^{i\theta})|^2 d\theta$$

(1.8)

$$\leq \begin{cases}
A_1 \frac{1}{(1-\rho)^{1/p}} \log^2 \frac{1}{1-\rho}, & \frac{1}{2} \leq r \leq \rho < 1, \\
A_2 \left\{ \frac{1}{(1-\rho)^{1/p}} + \frac{(1-\rho)^{2p}}{(1-r)^{4p-1}} \right\} \log^2 \frac{1}{1-r}, & \frac{1}{2} \leq \rho \leq r \leq 1.
\end{cases}$$

PROOF. Since

$$|z\varphi'(z)|^2 = p^2 \left| (\rho - z) z f'(z) \left\{ \frac{f(z)}{z} \right\}^p - (\rho - z) \left\{ \frac{f(z)}{z} \right\}^p - \frac{z}{p} \left\{ \frac{f(z)}{z} \right\}^{2p} \right|^2$$

$$\leq A_3 \left(|\rho - z|^2 \left| \frac{z f'(z)}{f(z)} \right|^2 + \left| \frac{f(z)}{z} \right|^{2p} \right)$$

and it is known that

$$\int_0^{2\pi} \left| \frac{f(te^{i\theta})}{te^{i\theta}} \right|^{4p} d\theta \leq \frac{A_4}{(1-t)^{4p-1}} \quad (0 < t < 1),$$

for $p > \frac{1}{4}$, hence

$$I'(r) = \frac{d}{dr} \int_0^{2\pi} |\varphi(re^{i\theta})|^2 d\theta = \frac{4}{r} \int_0^r \int_0^{2\pi} |\varphi'(te^{i\theta})|^2 t \, dt \, d\theta$$

$$= \frac{4}{r} \left(\int_0^{1/2} + \int_{1/2}^r \right) \int_0^{2\pi} |\varphi'(te^{i\theta})|^2 \, d\theta \, dt$$

(1.9)

$$\leq A_5 + A_6 \int_{1/2}^r t \, dt \left(\int_0^{2\pi} |te^{i\theta} - \rho|^2 \left| \frac{f'(te^{i\theta})}{f(te^{i\theta})} \right|^2 \left| f_p(te^{i\theta}) \right|^2 d\theta \right)$$

$$+ \int_{1/2}^r \frac{A_7 t \, dt}{(1-t)^{4p-1}}.$$

If $\frac{1}{2} < r \leq \rho < 1$, (1.9), together with the first inequality in (1.7), yields

$$I'(r) \leq \frac{A_8}{(1-r)(1-\rho)^{1/p}} \log \frac{1}{1-r}, \quad \frac{1}{2} \leq r \leq \rho < 1.$$

Integrating both sides of the above inequality with respect to r from $\frac{1}{2}$ to ρ we obtain the first inequality in (1.8).

If $1 > r \geq \rho$ we write

$$\int_0^r dt \int_0^{2\pi} |te^{i\theta} - \rho|^2 \left| \frac{f'(te^{i\theta})}{f(te^{i\theta})} \right|^2 \left| f_p \right|^2 d\theta$$

$$= \left(\int_0^{1/2} + \int_{1/2}^\rho + \int_\rho^r \right) \int_0^{2\pi} |te^{i\theta} - \rho|^2 \left| \frac{f'(te^{i\theta})}{f(te^{i\theta})} \right|^2 \left| f_p \right|^2 d\theta \, dt.$$
By Lemma 3, we have

\[I'(r) \leq A_9 \left(\frac{1}{(1 - \rho)^{(p+1)}} + \frac{(1 - \rho)^{2p}}{(1 - r)^{4p-1}} \right) \log \frac{1}{1 - r}, \quad \frac{1}{2} \leq \rho < r < 1. \]

Again integrating both sides of the above inequality from \(\rho \) to \(r \) yields

\[I(r) \leq I(\rho) + A_{10} \left(\frac{r - \rho}{(1 - \rho)^{(p+1)}} + \frac{(1 - \rho)^{2p}}{(1 - r)^{4p-1}} \right) \log \frac{1}{1 - r}, \quad \frac{1}{2} \leq \rho \leq r < 1. \]

By the first inequality of (1.8), we get the second inequality in (1.8). Thus the lemma follows.

2. **Proof of the Theorem.** If \(f \in S \), then the rotation \(e^{-i\rho}f(e^{i\varphi}z) \) also belongs to \(S \). This rotation does not change the magnitudes of the coefficients of the corresponding function \(F_p(z) \). Thus for a fixed \(\rho \) with \(0 < \rho < 1 \), there is no loss of generality in supposing that \(\max_{|z|=\rho} |f(z)| = |f(\rho)| \). Write

\[\varphi(z) = (\rho - z)F_p(z) = \rho + \sum_{n=1}^{\infty} (\rho D_n(p) - D_{n-1}(p))z^n. \]

By Cauchy’s inequality, we have

\[n|\rho D_n(p) - D_{n-1}(p)|| \leq \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\varphi'(re^{i\varphi})}{r^{n-1}} \right| d\theta \]

\[\leq \frac{A_{11}}{r^n} \left(\int_0^{2\pi} \left| re^{i\varphi} - \rho \right|^p \left| \frac{f(re^{i\varphi})}{r} \right|^p \left| \frac{f'(re^{i\varphi})}{r} \right|^p d\varphi + \int_0^{2\pi} \left| \frac{f(re^{i\varphi})}{r} \right|^p d\varphi \right) \]

\[\leq \frac{A_{11}}{r^n} \left(\int_0^{2\pi} \left| re^{i\varphi} - \rho \right|^2 \left| \frac{f(re^{i\varphi})}{r} \right|^{2p} d\varphi \int_0^{2\pi} \left| \frac{f'(re^{i\varphi})}{r} \right|^2 d\varphi \right)^{1/2} + \frac{A_{12}}{(1 - r)^{2p-1}}. \]

Application of Lemma 1 and Lemma 4 to the above integration gives

\[n|\rho D_n(p)| - |D_{n-1}(p)| \leq A_{13} \left(\frac{1}{(1 - \rho)^{t(p)}} + \frac{(1 - \rho)^{2p}}{(1 - r)^{4p-1}} \right)^{1/2} \log^{3/2} \frac{1}{1 - r}. \]

Putting \(r = 1 - 1/n, \rho = 1 - n^{-(4p-1)/(2p+t(p))} \), we have

\[|\rho D_n(p)| - |D_{n-1}(p)| \leq A_{14} n^{(T(p)-1)/2} \log^{3/2} n. \]

Since \(|D_n(p)| \leq A_{15} n^{2p-1} \), hence

\[n|\rho D_n(p)| - |D_{n-1}(p)| \leq A_{14} n^{(T(p)-1)/2} \log^{3/2} n + (1 - \rho)|D_{n-1}(p)| \]

\[\leq A_{16} \left(n^{(T(p)-1)/2} \log^{3/2} n + n^{2p-(4p-1)/(2p+t(p)-1)} \right). \]

Let \(x_0 = (4p - 1)/(2 + t(p)) \left(\frac{1}{4} < p < 1 \right) \). We see that

\[2p - \frac{4p - 1}{2p + t(p)} < 2p - x_0 = \frac{1}{2} + x_0/t(p) \]

\[\leq \frac{1}{2} + \frac{4p - 1}{2p + t(p)} \frac{t(p)}{2} = \frac{1}{2} (1 + T(p)). \]

Hence the theorem follows from (2.4).
REFERENCES

Department of Mathematics, Jiangxi Teachers’ College, Nanchang, China