MINIMAL SUPERALGEBRAS
OF WEAK-* DIRICHLET ALGEBRAS

TAKAHIKO NAKAZI

Abstract. Let A be a weak-* Dirichlet algebra in $L^\infty(m)$ and let $H^\infty(m)$ be the weak-* closure of A in $L^\infty(m)$. It may happen that there are minimal weak-* closed subalgebras of $L^\infty(m)$ that contain $H^\infty(m)$ properly. In this paper it is shown that if there is a minimal, proper, weak-* closed superalgebra of $H^\infty(m)$, then, in fact, that algebra is the unique least element in the lattice of all proper weak-* closed superalgebras of $H^\infty(m)$.

Recall that by definition [6], a weak-* Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathcal{A}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-* dense in $L^\infty = L^\infty(m)$ (the bar denotes conjugation); and (iii) for all f and g in A,

$$\int_X fg \, dm = \left(\int_X f \, dm \right) \left(\int_X g \, dm \right).$$

The abstract Hardy spaces $H^p = H^p(m)$, $1 \leq p < \infty$, associated with A are defined as follows. For $1 \leq p < \infty$, H^p is the closure of A in L^p, while H^∞ is defined to be the weak-* closure of A in L^∞. The space H^∞ is a weak-* closed subalgebra of L^∞.

In recent years the structure of the lattice of proper weak-* closed superalgebras of H^∞ has attracted considerable attention; see, in particular, [2, 3 and 5]. It is easy to construct examples where \mathcal{L} has no least element and no minimal elements. However, in Corollary 5 of [5], we gave a necessary and sufficient condition for \mathcal{L} to have a least element and we characterized it in Corollary 3 of [3]. The question arises: Can \mathcal{L} have minimal elements, but no least element? In this paper we show that the answer is no.

Theorem. If the lattice \mathcal{L} of proper weak-* closed superalgebras of H^∞ has a minimal element, then that element is the least element of \mathcal{L}.

Let B be a weak-* closed superalgebra of A. Let $B_0 = \{ f \in B; \int_X f \, dm = 0 \}$ and let I_B be the largest weak-* closed ideal of B contained in B_0. Then by Lemma 2 of [4], $I_B = \{ f \in L^\infty; \int_X fg \, dm = 0 \text{ for all } g \in B \}$. If $B = H^\infty$, then $I_B = H_0^\infty$. On p. 153 of [4], the measure m is called quasi-multiplicative on B if $\int_X f^2 \, dm = 0$ for every
f \in B \) such that \(\int_E f \, dm = 0 \) for all sets \(E \) such that the characteristic function \(\chi_E \in B \). The measure \(m \) is clearly quasi-multiplicative on \(H^\infty \) and \(L^\infty \). More elaborate examples are given on p. 163 of \([4]\). However, recently Kallenborn and König \([1, \text{Theorem 1.5}]\) showed that \(m \) is always quasi-multiplicative on any weak-* closed superalgebra of \(A \). This fact will play a crucial role in the proof of the theorem.

For any subset \(M \subseteq L^\infty \), \([M]_L \) will denote the closed linear span of \(M \) in \(L^2 \). If \(E \) is a measurable subset of \(X \), \(\chi_E \) will denote the characteristic function of \(E \). The support set of any function \(f \in L^1 \) will be denoted \(\text{supp}(f) \).

Lemma 1. Let \(B \) be a weak-* closed superalgebra of \(A \). If \(f \in B \) and \(\chi_E f \notin I_B \) for every \(\chi_E \in B \) with \(\chi_E f \neq 0 \), then \(\chi_E(f) \in B \).

Proof. Set \(M_f = [fB]_L \). Then \(M_f \) is a left-continuous invariant subspace for \(B \); i.e., \(\chi_E M_f \supseteq \chi_E I_B [M_f]_L \) for every nonzero \(\chi_E \in B \) with \(\chi_E M_f \neq \{0\} \). Since the measure \(m \) is quasi-multiplicative on \(B \), by Theorem 1.5 of \([1]\), we may apply Theorem 2 of \([4]\) to conclude that \(M_f = \chi_E q[B]_L \) for some unimodular \(q \) and some \(\chi_E \in B \). Clearly \(\chi_E(f) = \chi_E q \) and so \(\chi_E(f) \in B \).

Lemma 2. Suppose that \(B \) is a minimal weak-* closed superalgebra of \(H^\infty \). If \(f \in H^2 \) and \(f \notin [I_B]_L \), then \|f\| > 0 a.e.

Proof. Let \(K \) denote the orthogonal complement of \(I_B \) in \(H^2 \). We first show that if \(f \in K \), \(f \neq 0 \), then \(\|f\| > 0 \) a.e. To see this, set \(g = hf \) where \(h \in H^\infty \), \([hA]_L = H^2 \), and \(|h| = \min\{1, 1/|f|\} \). Then \(g \in B \), and \(\chi_E g \notin I_B \) for every \(\chi_E \in B \) with \(\chi_E g \neq 0 \). Lemma 1 implies that \(\chi_E(f) = \chi_E(g) \) belongs to \(B \). Set \(M_f = [fA]_L \) and \(D = \{g \in B; gM_f \subseteq M_f\} \). Then \(D \) is a weak-* closed superalgebra of \(H^\infty \) with \(D \subseteq B \), and \(\chi_E(f) \in D \). If \(\chi_E(f) \neq 1 \), then \(H^\infty \subseteq D \), and so \(D = B \) since \(B \) is assumed to be minimal. But then, since \(M_f \subseteq H^2_0 = \{g \in H^2; \int_X g \, dm = 0\} \) and \(BM_f \subseteq M_f \), we see that \(M_f \subseteq [I_B]_L \) by Lemma 2 of \([4]\). Thus we conclude that \(f \in [I_B]_L \), contrary to our hypothesis that \(f \in K \). Thus \(\chi_E(f) = 1 \). To complete the proof, choose an arbitrary \(f \in H^2 \) with \(f \notin [I_B]_L \) and write \(f = u + f_0 \) where \(u \in K \) and \(f_0 \in [I_B]_L \). Since \(f \notin [I_B]_L \), \(u \neq 0 \), and so \(|u| > 0 \) a.e., by what we just proved. Again, set \(g = hf \), where \(h \in H^\infty \), \([hA]_L = H^2 \), and \(|h| = \min\{1, 1/|f|\} \). Then \(g \in B \) and we claim that \(\chi_E g \notin I_B \) for every \(\chi_E \in B \) with \(\chi_E g \neq 0 \). For, if \(\chi_E_0 g \in I_B \), for some \(\chi_E_0 \in B \) with \(\chi_E_0 g \neq 0 \), then \(\chi_E_0 hu \in I_B \). Since the equation \([hA]_L = H^2 \) implies that \([hI_B]_L = [I_B]_L \), we find that \(\chi_E_0 u \in I_B \), which contradicts the fact that \(|u| > 0 \) a.e. Lemma 1 now implies that \(\chi_E(f) = \chi_E(g) \) lies in \(B \). So \((1 - \chi_E(f))u = -(1 - \chi_E(f))f_0 \) belongs to \([I_B]_L \cap K = \{0\} \). Thus \((1 - \chi_E(f))u = 0 \) a.e., which implies that \(\chi_E(f) = 1 \) a.e., since \(|u| > 0 \) a.e.

Proof of the Theorem. Let \(B \) be a minimal, proper, weak-* closed superalgebra of \(A \), and let \(D \) be any proper weak-* closed superalgebra of \(A \). We must show that \(B \subseteq D \). By Lemma 2 of \([4]\), it suffices to show that \(I_D \subseteq I_B \). Since \(D \supseteq H^\infty \), there is a \(\chi_E \in D \) with \(0 \leq m(E) \leq 1 \), by Lemma 3 of \([3]\). If \(f \in I_D \), then both \(\chi_E f \) and
(1 - \chi_E)f \in I_D and, in particular, \chi_E f and (1 - \chi_E)f belong to \(H^\infty\). By Lemma 2, both \chi_E f and (1 - \chi_E)f belong to \(I_B\), and so \(f = \chi_E f + (1 - \chi_E)f\) belongs to \(I_B\). Thus \(I_D \subseteq I_B\) and this completes the proof.

I am very grateful to the referee who improved the exposition in the first draft of this paper.

References

Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo 060, Japan

Current address: Division of Mathematics, Faculty of Science (General Education), Hokkaido University, Sapporo 060, Japan