Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On two conjectures concerning the partial sums of the harmonic series


Author: Stephen M. Zemyan
Journal: Proc. Amer. Math. Soc. 95 (1985), 83-86
MSC: Primary 40A05
DOI: https://doi.org/10.1090/S0002-9939-1985-0796451-8
MathSciNet review: 796451
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {S_n}$ denote the $ n$th partial sum of the harmonic series. For a given positive integer $ k > 1$, there exists a unique integer $ {n_k}$ such that $ {S_{{n_k} - 1}} < k < {S_{{n_k}}}$. It has been conjectured that $ {n_k}$ is equal to the integer nearest $ {e^{k - y}}$, where $ \gamma $ is Euler's constant. We provide an estimate on $ {n_k}$ which suggests that this conjecture may have to be modified. We also propose a conjecture concerning the amount by which $ {S_{{n_k} - 1}}$ and $ {S_{{n_k}}}$ differ from $ k$.


References [Enhancements On Off] (What's this?)

  • [1] T. M. Apostol, Calculus, Blaisdell, New York, 1962.
  • [2] R. P. Boas, Partial solution to advanced problem 5989*, Amer. Math. Monthly 83 (1976), 749.
  • [3] -, Partial sums of infinite series, and how they grow, Amer. Math. Monthly 84 (1977), 237-258. MR 0440240 (55:13118)
  • [4] -, Growth of partial sums of divergent series, Math. Comp. 31 (1977), 257-264. MR 0440862 (55:13730)
  • [5] R. P. Boas and J. W. Wrench, Jr., Partial sums of the harmonic series, Amer. Math. Monthly 78 (1971), 864-870. MR 0289994 (44:7179)
  • [6] L. Comtet, Problem 5346, Amer. Math. Monthly 74 (1967), 209. MR 1534204
  • [7] G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Springer-Verlag, Berlin, 1925, pp. 159, 380-381; problems VII, pp. 250, 251.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40A05

Retrieve articles in all journals with MSC: 40A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0796451-8
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society