A NOTE ON INTERSECTION OF LOWER SEMICONTINUOUS MULTIFUNCTIONS

ALOJZY LECHICKI and ANDRZEJ SPAKOWSKI

Abstract. Let F_1 and F_2 be closed and convex valued multifunctions from a topological space X to a normed space Y. Assume that the multifunctions are lower semicontinuous at x_0. We prove that the intersection multifunction $F = F_1 \cap F_2$ is lower semicontinuous at x_0 provided $F(x_0)$ is bounded and has nonempty interior.

1. Introduction. Let F be a multifunction from a topological space X to a uniform space (Y, \mathcal{U}), i.e., F is a mapping from X to the family of all subsets of Y. F will be called lower semicontinuous (lsc) at $x_0 \in X$ if for every $V \in \mathcal{U}$ there is $U \in N(x_0)$ such that $x \in U$ implies $F(x_0) \subset V(F(x))$, where $N(x_0)$ stands for the neighbourhood filter of x_0 and, for $A \subset Y$, $V(A) = \{ y \in Y : (a, y) \in V \text{ for some } a \in A \}$. Such multifunctions will also be called Hausdorff-lower semicontinuous (H-lsc). Accordingly, if $(Y, \| \cdot \|)$ is a normed space then F is lsc at x_0 if and only if for every $\varepsilon > 0$ there is $U \in N(x_0)$ such that $F(x_0) \subset F(x) + B_\varepsilon$ for every $x \in U$, where $B_\varepsilon = \{ y \in Y : \| y \| < \varepsilon \}$. Note that F is lsc at x_0 if and only if the multifunction \overline{F}, i.e., $F(x) = \overline{F}(x)$ for all $x \in X$, is lsc at x_0.

Let us recall the usual concept of lower semicontinuity. A multifunction F from a topological space X to a topological space Y is said to be Vietoris-lower semicontinuous (V-lsc) at $x_0 \in X$ if, for every open $G \subset Y$ with $F(x_0) \cap G \neq \emptyset$, there is $U \in N(x_0)$ such that $x \in U$ implies $F(x) \cap G \neq \emptyset$. It is known [6] that F is V-lsc at x_0 if and only if it is continuous at x_0 as a mapping from X to the hyperspace of all subsets of Y equipped with the lower Vietoris topology. If Y is a uniform space and F is H-lsc at x_0 then it is V-lsc at x_0. The converse also holds if the set $F(x_0)$ is totally bounded [6].

It is well known that neither H-lsc nor V-lsc are preserved under finite intersections of multifunctions. And, unlike upper semicontinuity [3, 5] no compactness type assumptions are helpful in this context. The classical result of Kuratowski [5, p. 180] says that the multifunction $F = F_1 \cap F_2$ is V-lsc at x_0 provided F_1 is V-lsc at x_0 and F_2 is constant, being equal, for every $x \in X$, to a fixed open subset of Y. Other results on the intersection of V-lsc multifunctions can be found in [8, 7, 3, and 1].

In this note we provide sufficient conditions for Hausdorff-lower semicontinuity of intersection of multifunctions. Our result improves an earlier result of one of the
authors obtained in [10] for finite-dimensional spaces. The key of the proof is an application of the well-known cancellation law for sets in topological vector spaces ([9], see also [11]): Let A, B and C be subsets of a real topological vector space. If B is bounded, and C is nonempty closed and convex, then $A + B \subseteq C + B$ implies $A \subseteq C$.

2. Auxiliary lemmas. In the remaining part of this paper $Y = (Y, || \cdot ||)$ is assumed to be a real normed space.

Lemma 1. If A is a convex bounded subset of Y and $\text{int} \ A \neq \emptyset$, then for every $\varepsilon > 0$ there are a set $C \subseteq \text{int} \ A$ and $\delta > 0$ such that $C + B_\delta \subseteq A \subseteq C + B_{\varepsilon}$.

Proof. Take an arbitrary $\varepsilon > 0$. Without loss of generality we can assume that $0 \in \text{int} \ A$. Since A is bounded, $\lambda \text{int} \ A \subseteq B_{\varepsilon/2}$ for some $0 < \lambda < 1$. Moreover, there is $\delta > 0$ such that $B_\delta \subseteq \lambda \text{int} \ A$. Thus, putting $C = (1 - \lambda) \text{int} \ A$ we get $C + B_\delta \subseteq A \subseteq C + B_\delta$ because $A = \text{int} \ A$.

The following example shows that the assumption of the boundedness of A cannot be omitted in the above lemma.

Example. Let $Y = l^\infty$ and put $A = \{(t_k) \in l^\infty: t_1 \geq 0 \text{ and } t_k \leq k(1 - t_1) \text{ for } k \geq 2\}$. Then A is convex and $\text{int} \ A \neq \emptyset$. Take $\varepsilon = \frac{1}{2}$ and suppose that there are $C \subseteq \text{int} \ A$ and $\delta > 0$ such that

$$C + B_\delta \subseteq A \subseteq C + B_{\varepsilon}.$$

For $n \in \mathbb{N}$ let us put $t^n_k = 0$ if $k \neq n$, $k \in \mathbb{N}$ and $t^n_n = n$. Then $x_n = (t_k^n)_{k \in \mathbb{N}} \in A$ for all $n \in \mathbb{N}$, so by (\ast) for every $n \in \mathbb{N}$ there is $y_n = (s_k^n)_{k \in \mathbb{N}} \in C$ such that $||x_n - y_n|| = \sup_{k \in \mathbb{N}}|t_k^n - s_k^n| < \frac{1}{2}$. Take $0 < \alpha < \min\{\delta, \frac{1}{2}\}$. Then $y_n + z \in C + B_\delta \subseteq A$ for every $n \in \mathbb{N}$, where $z = (\alpha, \alpha, \ldots)$. It follows that $s_k^n + \alpha > 0$ and $\alpha + s_k^n \leq n(1 - s_k^n - \alpha)$ for $n \geq 2$, hence $an \leq \frac{1}{2} - \alpha$ for $n \geq 2$, a contradiction.

However, if Y is a finite-dimensional space then Lemma 1 can be strengthened.

Lemma 2. Let A be a convex subset of \mathbb{R}^n with nonempty interior. Then for every $\varepsilon > 0$ there are a set $C \subseteq \text{int} \ A$ and $\delta > 0$ such that $C + B_\delta \subseteq A \subseteq C + B_{\varepsilon}$.

Proof. Assume that A is unbounded. Otherwise, we can apply Lemma 1. It is clear that the lemma holds if $n = 1$. Suppose then that the thesis of the lemma is satisfied for every convex subset $D \subseteq \mathbb{R}^{n-1}$ with nonempty interior. Take an arbitrary $\varepsilon > 0$ and consider two cases:

1. A contains a line. Without loss of generality we can assume that A contains the x_n-axis. Putting D to be the image of $\text{int} \ A$ by the projection into \mathbb{R}^{n-1} we have $\text{int} \ A = D \times \mathbb{R}$. Thus there are $E \subseteq \text{int} \ D$ and $\delta > 0$ such that $E + (B_\delta \cap \mathbb{R}^{n-1}) \subseteq D \subseteq E + (B_\varepsilon \cap \mathbb{R}^{n-1})$. Then denoting by C the set $C = E \times \mathbb{R}$ we get $C \subseteq \text{int} \ A$ and $C + B_\delta \subseteq A \subseteq C + B_{\varepsilon}$.

2. A does not contain a line. We can suppose that $\text{int} \ A$ contains the nonnegative part of the x_n-axis and that for some $\lambda_0 > 0$ the set $A_1 = A \cap \{(x, \mu): x \in \mathbb{R}^{n-1}$ and $\mu \leq \lambda_0\}$ is bounded and has nonempty interior. By Lemma 1 there are $G_1 \subseteq \text{int} \ A_1$ and $\alpha > 0$ such that $C_1 + B_\alpha \subseteq A_1 \subseteq C_1 + B_{\varepsilon}$. Let M denote the
hyperplane $M = \{(x, \lambda_0): x \in \mathbb{R}^{n-1}\}$. Since $D = A \cap M$ is a convex body in an $(n-1)$-dimensional space, there are $E \subset \text{int} D$ and $\beta > 0$ such that $E + (B_{\beta} \cap M) \subset D \subset E + (B_{\beta/2} \cap M)$. Put $A_2 = A \cap \{(x, \mu): x \in \mathbb{R}^{n-1} \text{ and } \mu \geq \lambda_0\}$. Then taking $0 < \sigma < \min\{\beta, \epsilon/2\}$ we get the following: For every $y \in \partial A_2$ there exists $z \in \text{int} A_2$, such that $||z - y|| \leq \epsilon/2$ and $z + B_\sigma \subset \text{int} A_2$, where ∂A_2 denotes the boundary of A_2. Let C_2 denote the set $C_2 = \{y \in A_2: \inf ||z - y||: z \in A_2 \geq \sigma\}$. Let us observe that $C_2 + B_\sigma \subset C_2 \subset C_2 + B_\sigma$. Consequently, putting $C = C_1 \cup C_2$ and taking $0 < \delta < \min\{\alpha, \sigma\}$ we get $C + B_\delta \subset A \subset C + B_\delta$.

A multifunction F from X to Y is called locally convex-valued (locally closed-valued) at $x_0 \in X$ if there is $U \subset N(x_0)$ such that $F(x)$ is convex (closed) for all $x \in U$. The following lemma is proved in [10].

Lemma 3. Assume that a multifunction F from X to Y is lsc and locally convex-valued at $x_0 \in X$. If $\text{int} F(x_0) \neq \emptyset$ then $\text{int} \{F(x): x \in U\} \neq \emptyset$ for some $U \subset N(x_0)$.

3. Main results.

Theorem A. Assume that the multifunctions F_1 and F_2 from X to Y are locally closed-valued and locally convex-valued at $x_0 \in X$. If F_1 and F_2 are lsc at x_0 and the set $F(x_0) + F_1(x_0) \cap F_2(x_0)$ is bounded and $\text{int} F(x_0) \neq \emptyset$ then the multifunction $F = F_1 \cap F_2$ is lsc at x_0.

Proof. Let $\epsilon > 0$ be arbitrary. By Lemma 1 there are a subset $C \subset \text{int} F(x_0)$ and $\delta > 0$ such that $C + B_\delta \subset F(x_0) \subset C + B_\sigma$. Since F_1 and F_2 are lsc at x_0, there is $U \subset N(x_0)$ such that $F_i(x_0) \subset F_i(x) + B_\delta$ for all $x \in U$ and $i = 1, 2$. Without loss of generality we can assume that F_1 and F_2 are closed and convex-valued on U. Thus, applying the cancellation law we get $C \subset F(x) = F_1(x) \cap F_2(x)$ for every $x \in U$. But it follows that $F(x_0) \subset C + B_\sigma \subset F(x) + B_\sigma$ for all $x \in U$.

Theorem B. Let $Y = \mathbb{R}^n$ and assume that the multifunctions F_1 and F_2 are locally convex-valued at $x_0 \in X$. If F_1 and F_2 are lsc at x_0 and $\text{int} F(x_0) \neq \emptyset$ then the multifunction $F = F_1 \cap F_2$ is lsc at x_0.

Proof. Applying Lemma 2 and proceeding as in the proof of Theorem A we obtain that the multifunction $F_1 \cap F_2$ is lsc at x_0. Then, by Lemma 3 we find $U \subset N(x_0)$ such that F_1 and F_2 are convex-valued on U and $\text{int}(F_1(x) \cap F_2(x)) \neq \emptyset$ for all $x \in U$. Then, since Y is finite dimensional, we have $\text{int}(F_1(x) \cap F_2(x)) \neq \emptyset$ and therefore $F_1(x) \cap F_2(x) = F_1(x) \cap F_2(x)$, whenever $x \in U$ (see e.g. [2, p. 253]). Hence, the multifunction $F_1 \cap F_2$, and so also F, is lsc at x_0.

4. Counterexamples. We give some examples concerning Theorems A and B. The first one shows that the assumption $\text{int} F(x_0) \neq \emptyset$ cannot be omitted.

Example 1. Let $Y = \mathbb{R}^2$, $F_1(x) = \text{conv}\{(0, 0), (1, 0), (0, -1)\}$ and $F_2(x) = \text{conv}\{(0, 0), (1, 0), (1, 0)\}$ for all $x \in [0, 1]$. Then F_1 and F_2 are compact and convex-valued, lsc at every $x \in [0, 1]$ but $F = F_1 \cap F_2$ is not lsc at 0. Note that F is nonempty valued and $\text{int} F(0) = \emptyset$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The second example shows that both multifunctions F_1 and F_2 must be locally convex-valued.

Example 2. Let $Y = \mathbb{R}^2$, $F_1(x) = \text{conv}\{(0, x), (0, 1), (1, 0), (\frac{1}{2}, 0)\} \cup \text{conv}\{(\frac{1}{2}, 0), (1, 0), (1, -1)\}$ and $F_2(x) = \text{conv}\{(0, 0), (1, 0), (1, -1)\}$ for all $x \in [0, 1]$. Then F_1 and F_2 are compact-valued and lsc at every $x \in [0, 1]$. F_2 is convex-valued while F_1 is not. F is not lsc at 0.

The third example shows that the boundedness of $F(x_0)$ in Theorem A is essential.

Example 3. Let $Y = l^\infty$ and $F_1(x) = \{(t_k) \in l^\infty: t_1 \geq x \text{ and } t_k \leq k - x \text{ for } k \geq 2\}$ and $F_2(x) = \{(t_k) \in l^\infty: t_1 \leq 1 - x \text{ and } t_k \leq k(1 - t_1 - x) \text{ and } t_k \leq k + t_1/k - x/k \text{ for } k \geq 2\}$ for all $x \in [0, 1]$. Then F_1 and F_2 are closed and convex-valued. Moreover, they are lsc at 0. The set $F(0) = \{(t_k) \in l^\infty: 0 \leq t_1 \leq 1 \text{ and } t_k \leq k(1 - t_1) \text{ for } k \geq 2\}$ has nonempty interior but is not bounded. F is not lsc at 0.

Finally, the last example shows that in all infinite-dimensional normed spaces the multifunctions in Theorem A must be locally closed-valued.

Example 4. Let Y be an infinite-dimensional normed space and let f be a linear noncontinuous functional on Y. Put $A = \{y \in B_1: f(y) < 0\} \cup \{0\}$ and $B = \{y \in B_1: f(y) > 0\} \cup \{0\}$ where B_1 is the closed unit ball of Y. Then $A = B = B_1$. Let us define the multifunctions F_1 and F_2 as follows: $F_1(0) = F_2(0) = B_1$ and $F_1(x) = A$ and $F_2(x) = B$ for all $x \in (0, 1]$. Then F_1 and F_2 are lsc and convex-valued. The multifunction F is nonempty valued, the set $F(0)$ is bounded with nonempty interior but F is not lsc at 0.

References

Institute of Mathematics, Pedagogical University, Wielkopolska 15, 70 - 451 Szczecin, Poland

Institute of Mathematics, Pedagogical University, Oleska 48, 45 - 951 Opole, Poland

(Current address of Andrzej Spakowski)

Current address (Alojzy Lechicki): Hardstrasse 43, D-8510 Fürth, West Germany