Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On unimodular rows


Author: Moshe Roitman
Journal: Proc. Amer. Math. Soc. 95 (1985), 184-188
MSC: Primary 13D15; Secondary 18F25, 19A13, 19B10
MathSciNet review: 801320
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove here, among other results, that if $ ({x_0}, \ldots ,{x_n})$ is a unimodular row over a commutative ring $ A$, $ n \geqslant 2$, $ x \in A$ and

$\displaystyle x \equiv {x_n}\quad \mod J(A{x_0} + \cdots + A{x_{n - 2}})$

then $ ({x_0}, \ldots ,{x_{n - 1}},{x_n}){ \sim _E}({x_0}, \ldots ,{x_{n - 1}},x)$.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13D15, 18F25, 19A13, 19B10

Retrieve articles in all journals with MSC: 13D15, 18F25, 19A13, 19B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0801320-0
PII: S 0002-9939(1985)0801320-0
Article copyright: © Copyright 1985 American Mathematical Society