The proof of a conjecture of Graham for sequences containing primes

Author:
Rivka Klein

Journal:
Proc. Amer. Math. Soc. **95** (1985), 189-190

MSC:
Primary 11A05

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801321-2

MathSciNet review:
801321

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite sequence of positive integers. R. L. Graham has conjectured that . We verify this conjecture in case at least one of the 's is prime.

**[1]**R. D. Boyle,*On a problem of R. L. Graham*, Acta Arith.**34**(1977/78), no. 2, 163–177. MR**0465996**, https://doi.org/10.4064/aa-34-2-163-177**[2]**R. L. Graham,*Unsolved problem*5749, Amer. Math. Monthly**77**(1970), 775.**[3]**P. Erdős,*Problems and results on combinatorial number theory*, A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971) North-Holland, Amsterdam, 1973, pp. 117–138. MR**0360509****[4]**Gerald Weinstein,*On a conjecture of Graham concerning greatest common divisors*, Proc. Amer. Math. Soc.**63**(1977), no. 1, 33–38. MR**0434941**, https://doi.org/10.1090/S0002-9939-1977-0434941-3**[5]**Riko Winterle,*A problem of R. L. Graham in combinatorial number theory*, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1970) Louisiana State Univ., Baton Rouge, La., 1970, pp. 357–361. MR**0268152**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11A05

Retrieve articles in all journals with MSC: 11A05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801321-2

Article copyright:
© Copyright 1985
American Mathematical Society