The proof of a conjecture of Graham for sequences containing primes

Author:
Rivka Klein

Journal:
Proc. Amer. Math. Soc. **95** (1985), 189-190

MSC:
Primary 11A05

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801321-2

MathSciNet review:
801321

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite sequence of positive integers. R. L. Graham has conjectured that . We verify this conjecture in case at least one of the 's is prime.

**[1]**R. D. Boyle,*On a problem of R. L. Graham*, Acta Arith.**34**(1978), 163-177. MR**0465996 (57:5880)****[2]**R. L. Graham,*Unsolved problem*5749, Amer. Math. Monthly**77**(1970), 775.**[3]**P. Erdös,*Problems and results on combinatorial number theory*, A Survey of Combinatorial Theory, North-Holland, Amsterdam, 1973, Chapter 12. MR**0360509 (50:12957)****[4]**G. Weinstein,*On a conjecture of Graham concerning greatest common divisors*, Proc. Amer. Math. Soc.**63**(1977), 33-38. MR**0434941 (55:7904)****[5]**R. Winterle,*A problem of R. L. Graham in combinatorial number theory*, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La., 1970, 357-361. MR**0268152 (42:3051)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11A05

Retrieve articles in all journals with MSC: 11A05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801321-2

Article copyright:
© Copyright 1985
American Mathematical Society