Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Class number relation between certain sextic number fields


Author: Akira Endô
Journal: Proc. Amer. Math. Soc. 95 (1985), 199-204
MSC: Primary 11R29; Secondary 11R20
DOI: https://doi.org/10.1090/S0002-9939-1985-0801323-6
MathSciNet review: 801323
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The congruence relation modulo 7 between the class numbers of the real and imaginary sextic subfields of the extension of a quadratic number field obtained by adjoining a seventh root of unity is studied.


References [Enhancements On Off] (What's this?)

  • [1] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952. MR 0049239 (14:141a)
  • [2] A. Kudo, On a class number relation of imaginary abelian fields, J. Math. Soc. Japan 27 (1975), 150-159. MR 0360520 (50:12968)
  • [3] S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math., Vol. 797, Springer-Verlag, Berlin and New York, 1980. MR 584794 (82a:12004)
  • [4] C. J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comput. 31 (1977), 1019-1029. MR 0498483 (58:16593)
  • [5] -, On the class number of relative quadratic fields, Math. Comput. 32 (1978), 1261-1270. MR 502013 (80h:12004)
  • [6] C. D. Walter, Kuroda's class number relation, Acta Arith. 35 (1979), 41-51. MR 536879 (82d:12007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R29, 11R20

Retrieve articles in all journals with MSC: 11R29, 11R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0801323-6
Keywords: Sextic number field, class number, $ p$-adic $ L$-function
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society