Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Explicit examples of Bloch functions in every $ H\sp p$ space, but not in BMOA


Authors: Finbarr Holland and J. Brian Twomey
Journal: Proc. Amer. Math. Soc. 95 (1985), 227-229
MSC: Primary 30D55; Secondary 46E99
DOI: https://doi.org/10.1090/S0002-9939-1985-0801328-5
MathSciNet review: 801328
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown how to construct analytic functions, with nonnegative Taylor coefficients, that belong to the intersection of the space of Bloch functions and all the $ {H^p}$ spaces and yet do not have bounded mean oscillation.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37. MR 50 #13536. MR 0361090 (50:13536)
  • [2] J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255-265. MR 54 #7787. MR 0419769 (54:7787)
  • [3] F. F. Bonsall, Boundedness of Hankel matrices, J. London Math. Soc. (2) 29 (1984), 289-300. MR 744100 (85f:47030)
  • [4] Douglas Campbell, Joseph Cima and Kenneth Stephenson, A Bloch function in all $ {H^p}$ classes, but not in BMOA, Proc. Amer. Math. Soc. 78 (1980), 229-230. MR 80k:30033. MR 550501 (80k:30033)
  • [5] C. L. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 56 #6263. MR 0447953 (56:6263)
  • [6] Finbarr Holland and David Walsh, Boundedness criteria for Hankel operators, Proc. Royal Irish Acad. 84A (1984), 141-154. MR 790307 (86j:47034)
  • [7] Y. Katznelson, An introduction to harmonic analysis, Wiley, New York-London-Sydney, 1968. MR 40 #1734. MR 0248482 (40:1734)
  • [8] W. T. Sledd and D. A. Steganga, An $ {H^1}$ multiplier theorem, Ark. Mat. 19 (1981), 265-270. MR 84j:42018. MR 650500 (84j:42018)
  • [9] Kenneth Stephenson, Weak subordination and stable classes of meromorphic functions, Trans. Amer. Math. Soc. 262 (1980), 565-577. MR 81m:30029. MR 586736 (81m:30029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D55, 46E99

Retrieve articles in all journals with MSC: 30D55, 46E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0801328-5
Keywords: Bloch functions, $ {H^p}$ spaces, bounded mean oscillation, dual spaces
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society