On the classes and

Author:
M. Avdispahić

Journal:
Proc. Amer. Math. Soc. **95** (1985), 230-234

MSC:
Primary 26A45; Secondary 42A28

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801329-7

MathSciNet review:
801329

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove inclusion relations between Waterman's and Chanturiya's classes and point to some corollaries thereof. The situation which occurs in connection with Zygmund's theorem for Waterman's classes is clarified.

**[1]**N. K. Bari,*Trigonometricheskie ryady*, Fizmatgiz, Moscow, 1961 (English transl.,*A treatise on trigonometric series*, Vols. 1 and 2, Macmillan, New York, 1964). MR**0126115 (23:A3411)****[2]**S. V. Bochkarev,*On a problem of Zygmund*, Math. USSR-Izv.**7**(1973), 629-637.**[3]**Z. A. Chanturiya,*The modulus of variation of a function and its application in the theory of Fourier series*, Soviet. Math. Dokl.**15**(1974), 67-71.**[4]**-,*Absolute convergence of Fourier series*, Math. Notes**18**(1975), 695-700. MR**0394010 (52:14816)****[5]**-,*On uniform convergence of Fourier series*, Math. USSR-Sb.**29**(1976), 475-495.**[6]**-, "On the absolute convergence of classes ," in*Fourier analysis and approximation theory*, Colloq. Math. Soc. Janos Bolyai**19**(1978), 219-240.**[7]**-,*On the absolute convergence of Fourier series of the classes*, Pacific J. Math.**96**(1981), 37-61;*Errata*, ibid.**103**(1982), 611. MR**634761 (83a:42009)****[8]**-,*The modulus of variation of a function and continuity*, Bull. Acad. Sci. Georgian SSR**80**(1975), 281-283. (Russian) MR**0404549 (53:8349)****[9]**E. Cohen,*On the Fourier coefficients and continuity of functions of class*, Rocky Mountain J. Math.**9**(1979), 227-237. MR**519938 (80m:42006)****[10]**C. Goffman and D. Waterman,*Functions whose Fourier series converge for every change of variable*, Proc. Amer. Math. Soc.**19**(1968), 80-86. MR**0221193 (36:4245)****[11]**-,*The localization principle for double Fourier series*, Studia Math.**69**(1980), 41-57. MR**604353 (82d:42010)****[12]**S. Perlman,*Functions of generalized variation*, Fund. Math.**105**(1980), 199-211. MR**580582 (81h:26007)****[13]**S. Perlman and D. Waterman,*Some remarks on functions of**-bounded variation*, Proc. Amer. Math. Soc.**74**(1979), 113-18. MR**521883 (80e:26007)****[14]**M. Schramm and D. Waterman,*On the magnitude of Fourier coefficients*, Proc. Amer. Math. Soc.**85**(1982), 407-410. MR**656113 (83h:42008)****[15]**R. N. Siddiqi,*Absolute convergence of Fourier series of a function of Wiener's class*, Portugal. Math.**38**(1979), 141-148. MR**682363 (84d:42011)****[16]**S. Wang,*Some properties of the functions of**-bounded variation*, Sci. Sinica Ser. A**25**(1982), 149-160. MR**669675 (83k:26006)****[17]**D. Waterman,*On convergence of Fourier series of functions of generalized bounded variation*, Studia Math.**44**(1972), 107-117;*Errata*, ibid.**44**(1972), 651. MR**46**9623. MR**0310525 (46:9623)****[18]**-,*On**-bounded variation*, Studia Math.**57**(1976), 33-45. MR**0417355 (54:5408)****[19]**-,*On the summability of Fourier series of functions of**-bounded variation*, Studia Math.**55**(1976), 87-95.**[20]**-,*Fourier series of functions of**-bounded variation*, Proc. Amer. Math. Soc.**74**(1979), 119-123.**[21]**A. Zygmund,*Trigonometric series*, 2nd ed., Vol. I, Cambridge Univ. Press, New York, 1959. MR**0107776 (21:6498)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A45,
42A28

Retrieve articles in all journals with MSC: 26A45, 42A28

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801329-7

Keywords:
Bounded variation,
modulus of variation,
Lipschitz classes,
Zygmund's theorem,
Wiener's theorem

Article copyright:
© Copyright 1985
American Mathematical Society