Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the classes $ \Lambda {\rm BV}$ and $ {\rm V}[\nu]$


Author: M. Avdispahić
Journal: Proc. Amer. Math. Soc. 95 (1985), 230-234
MSC: Primary 26A45; Secondary 42A28
DOI: https://doi.org/10.1090/S0002-9939-1985-0801329-7
MathSciNet review: 801329
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove inclusion relations between Waterman's and Chanturiya's classes and point to some corollaries thereof. The situation which occurs in connection with Zygmund's theorem for Waterman's classes is clarified.


References [Enhancements On Off] (What's this?)

  • [1] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moscow, 1961 (English transl., A treatise on trigonometric series, Vols. 1 and 2, Macmillan, New York, 1964). MR 0126115 (23:A3411)
  • [2] S. V. Bochkarev, On a problem of Zygmund, Math. USSR-Izv. 7 (1973), 629-637.
  • [3] Z. A. Chanturiya, The modulus of variation of a function and its application in the theory of Fourier series, Soviet. Math. Dokl. 15 (1974), 67-71.
  • [4] -, Absolute convergence of Fourier series, Math. Notes 18 (1975), 695-700. MR 0394010 (52:14816)
  • [5] -, On uniform convergence of Fourier series, Math. USSR-Sb. 29 (1976), 475-495.
  • [6] -, "On the absolute convergence of classes $ V[{n^\alpha }]$," in Fourier analysis and approximation theory, Colloq. Math. Soc. Janos Bolyai 19 (1978), 219-240.
  • [7] -, On the absolute convergence of Fourier series of the classes $ {H^\omega } \cap V[v]$, Pacific J. Math. 96 (1981), 37-61; Errata, ibid. 103 (1982), 611. MR 634761 (83a:42009)
  • [8] -, The modulus of variation of a function and continuity, Bull. Acad. Sci. Georgian SSR 80 (1975), 281-283. (Russian) MR 0404549 (53:8349)
  • [9] E. Cohen, On the Fourier coefficients and continuity of functions of class $ \mathcal{V}_\phi ^ * $, Rocky Mountain J. Math. 9 (1979), 227-237. MR 519938 (80m:42006)
  • [10] C. Goffman and D. Waterman, Functions whose Fourier series converge for every change of variable, Proc. Amer. Math. Soc. 19 (1968), 80-86. MR 0221193 (36:4245)
  • [11] -, The localization principle for double Fourier series, Studia Math. 69 (1980), 41-57. MR 604353 (82d:42010)
  • [12] S. Perlman, Functions of generalized variation, Fund. Math. 105 (1980), 199-211. MR 580582 (81h:26007)
  • [13] S. Perlman and D. Waterman, Some remarks on functions of $ \Lambda $-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 113-18. MR 521883 (80e:26007)
  • [14] M. Schramm and D. Waterman, On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc. 85 (1982), 407-410. MR 656113 (83h:42008)
  • [15] R. N. Siddiqi, Absolute convergence of Fourier series of a function of Wiener's class $ {V_p}$, Portugal. Math. 38 (1979), 141-148. MR 682363 (84d:42011)
  • [16] S. Wang, Some properties of the functions of $ \Lambda $-bounded variation, Sci. Sinica Ser. A 25 (1982), 149-160. MR 669675 (83k:26006)
  • [17] D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44 (1972), 107-117; Errata, ibid. 44 (1972), 651. MR 46 9623. MR 0310525 (46:9623)
  • [18] -, On $ \Lambda $-bounded variation, Studia Math. 57 (1976), 33-45. MR 0417355 (54:5408)
  • [19] -, On the summability of Fourier series of functions of $ \Lambda $-bounded variation, Studia Math. 55 (1976), 87-95.
  • [20] -, Fourier series of functions of $ \Lambda $-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 119-123.
  • [21] A. Zygmund, Trigonometric series, 2nd ed., Vol. I, Cambridge Univ. Press, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A45, 42A28

Retrieve articles in all journals with MSC: 26A45, 42A28


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0801329-7
Keywords: Bounded variation, modulus of variation, Lipschitz classes, Zygmund's theorem, Wiener's theorem
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society