Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Forelli problem concerning ideals in the disk algebra $ A({\bf D})$

Author: Raymond Mortini
Journal: Proc. Amer. Math. Soc. 95 (1985), 261-264
MSC: Primary 46J15; Secondary 30H05
MathSciNet review: 801335
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Z(f)$ be the zero set of a function $ f \in A({\mathbf{D}})$ and $ Z(I) = { \cap _{f \in I}}Z(f)$ the zero set of an ideal $ I$ in $ A({\mathbf{D}})$. It is shown that in the disk algebra $ A({\mathbf{D}})$ every finitely generated ideal $ I$ has the weak Forelli property, i.e. there exists a function $ f \in I$ such that $ Z(f) \cap T = Z(I) \cap T$, where $ T$ is the boundary of the unit circle $ {\mathbf{D}}$. On the other hand, there exists a finitely generated ideal $ I$ in $ A({\mathbf{D}})$ such that $ Z(f) \ne Z(I)$ for each choice of $ f \in I$. This provides us with a negative answer to a problem of F. Forelli [1].

References [Enhancements On Off] (What's this?)

  • [1] F. Forelli, A note on the ideals in the disk algebra, Proc. Amer. Math. Soc. 84 (1982), 389-392. MR 83c 46041. MR 640238 (83c:46041)
  • [2] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 83g 30037 MR 628971 (83g:30037)
  • [3] L. Gillman and M. Jerison, Rings of continuous functions, Graduate Texts in Math., No. 43, Springer-Verlag, Berlin and New York, 1976. MR 53 #11352. MR 0407579 (53:11352)
  • [4] K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, N. J., 1962. MR 24 #A 2844. MR 0133008 (24:A2844)
  • [5] M. v. Renteln, Every subring $ R$ of $ N$ with $ A({\mathbf{D}}) \subset N$ is not adequate, Acta Sci. Math. 39 (1977), 139-140. MR 56 #5908. MR 0447598 (56:5908)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J15, 30H05

Retrieve articles in all journals with MSC: 46J15, 30H05

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society