Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The first coefficient of the Conway polynomial


Author: Jim Hoste
Journal: Proc. Amer. Math. Soc. 95 (1985), 299-302
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0002-9939-1985-0801342-X
MathSciNet review: 801342
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A formula is given for the first coefficient of the Conway polynomial of a link in terms of its linking numbers. A graphical interpretation of this formula is also given.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, pp. 329-358. MR 0258014 (41:2661)
  • [2] C. Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270 (1982), 75-109. MR 642331 (83j:57001)
  • [3] F. Hosokawa, On $ \nabla $-polynomials of links, Osaka Math. J. 10 (1958), 273-282. MR 0102820 (21:1606)
  • [4] J. Hoste, The Arf invariant of a totally proper link, Topology Appl. 18 (1984), 163-177. MR 769289 (86i:57009)
  • [5] L. H. Kauffman, The Conway polynomial, Topology 20 (1981), 101-108. MR 592573 (81m:57004)
  • [6] H. Murakami, The Arf invariant and the Conway polynomial of a link, Math. Seminar Notes, Vol. 11, Kobe University, 1983, pp. 335-344. MR 769040 (86g:57006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0801342-X
Keywords: Knot, link, Conway polynomial
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society