A p-LOCAL SPLITTING OF $BU(n)$
KENSHI ISHIGURO

ABSTRACT. Let p be a prime and let $n > 1$. A necessary and sufficient condition that the classifying space $BU(n)$ is p-equivalent to the product of nontrivial spaces is that p does not divide n.

Let $U(n)$ denote the Lie group of unitary $n \times n$ matrices, and let $U = \varprojlim U(n)$. In this paper we study the classifying space $BU(n)$ and determine those primes at which this space is equivalent to a product. The result is quite different from the infinite case. Recall that when we pass to the limit there are two types of splitting that occur. The first requires no localization;

$$BU \simeq BT^1 \times BSU.$$

The proof of this splitting is elementary, of course, but it does use the H-structure on BU. The second type of splitting is truly p-primary. At each prime p, BU splits into a product of p irreducible spaces

$$BU \simeq_p \prod_{n=1}^{p} B(2n,p).$$

This was first proved by Peterson [6]. A thorough account of this splitting is also given in Zabrodsky's book [8].

The main result of this paper is

THEOREM. If $1 < n < \infty$, then $BU(n)$ is irreducible at p if and only if p divides n. If p does not divide n, then

$$BU(n) \simeq_p BT^1 \times BSU(n)$$

and both factors are irreducible.

Most of the work in our proof involves showing that when p divides n, the unstable algebra $H^*(BU(n); F_p)$ is indecomposable over the Steenrod algebra. In other words, it cannot be expressed as the tensor product of two nontrivial unstable A^*-algebras. Here A^* denotes the Steenrod algebra modulo the two-sided ideal generated by the Bockstein coboundary. Our proof uses reflection groups and the methods and results of Adams and Wilkerson [2].

I would like to thank my advisor, C. W. Wilkerson, for his help and encouragement.

1. A^*-algebras. Let H^* and E^* be A^*-algebras. We say that E^* is a retract of H^* if there are A^*-maps

$$E^* \xrightarrow{i} H^*$$

such that $\pi \cdot i = 1_{E^*}$.
Proposition 1. Suppose that $H^* \cong H^*(BT^n : F_p)^W$ where W is a suitable group of A^*-automorphisms. Then any A^*-retract of H^* is likewise the ring of invariants in $H^*(BT^k : F_p)$ for some integer k and some group W'.

Proof. The argument uses the main result of Adams and Wilkerson [2] and the naturality of A^*-maps. Suppose that E^* is a retract of H^*. Obviously, E^* is embedded in $H^*(BT^n : F_p)$. Since $E^* = \pi H^*$, it is Noetherian. So it remains to show that E^* satisfies the two conditions in [2, Theorem 1.2]:

(i) E^* is integrally closed in its field of fractions.

(ii) If $y \in E^{2dp}$ and $Q^r y = 0$ for any $r \geq 1$, then $y = \alpha^p$ for some $\alpha \in E^*$.

First, suppose $\alpha \in q(E^*)$. Here $q(R)$ denotes the quotient field of an integral domain R. Let i be the monomorphism of the fields $q(E^*) \rightarrow q(H^*)$ such that $i|_{E^*} = i$. If α is integral over E^*, then the image $\tilde{i}(\alpha)$ is integral over H^*. Since H^* is integrally closed, $\tilde{i}(\alpha)$ lies in H^*. Let us write $\alpha = \alpha_1 / \alpha_2$ where $\alpha_1 \in E^*$. Thus, we get $i(\alpha_1) = i(\alpha_2) \cdot \beta_0$ for some $\beta_0 \in H^*$. Applying the map π, it follows that

$$\pi \cdot i(\alpha_1) = \pi \cdot i(\alpha_2) \cdot \pi(\beta_0), \quad \alpha_1 = \alpha_2 \cdot \pi(\beta_0).$$

Since $\pi(\beta_0) \in E^*$, we conclude that α lies in E^*. So E^* is integrally closed. Next, suppose $y \in E^{2dp}$ and $Q^r y = 0$ for any $r \geq 1$. Since i is an A^*-map, then $Q^r i(y) = 0$. Thus there is $x \in H^{2d}$ such that $i(y) = x^p$.

Once again we apply the map π, getting $\pi i(y) = \pi(x)^p, y = \pi(x)^p$ where $\pi(x) \in E^{2d}$. This completes the proof.

2. Generalized reflection groups. Let V be a finite-dimensional vector space over a field k. A pseudo-reflection of V is a linear automorphism w such that $\text{rank}(1 - w) = 1$. We say that a vector u is a direction of a pseudo-reflection if it is an eigenvector for the eigenvalue that is not equal to 1.

Let $p: G \rightarrow \text{GL}(V)$ be a linear representation. A nonzero vector $t \in V$ is called G-invariant if $p(g)t = t$ for any $g \in G$. The representation p is called reducible with respect to a G-invariant vector t if there is a hyperplane V_0 in V such that $V = V_0 \oplus \langle t \rangle$ and, for any $g \in G$, the automorphism $p(g)$ has the form $\gamma \oplus 1$ for some $\gamma \in \text{GL}(V_0)$.

Proposition 2. Let W be the group generated by pseudo-reflections w_1, \ldots, w_r. Assume that each w_i is a direction of w_i and that t is W-invariant. Then W is reducible with respect to t if and only if the vector t does not belong to the subspace spanned by u_1, \ldots, u_r.

Proof. Suppose that W is reducible and that V_0 is the hyperplane. Let w be one of the generators w_1, \ldots, w_r and let u be a direction of w. We can write $u = v_0 + bt$ for some $v_0 \in V_0$ and $b \in k$. If a is the eigenvalue which is not 1, it follows that

$$0 = w(u) - au = w(v_0 + bt) - a(v_0 + bt) = w(v_0) - av_0 + b(1 - a)t.$$

Since $w(v_0) \in V_0$, we get $b(1 - a) = 0$. So $b = 0$ and $u = v_0 \in V_0$. This shows that $\text{Span}(u_1, \ldots, u_r) \subset V_0$. Therefore, t does not belong to $\text{Span}(u_1, \ldots, u_r)$.

Conversely, if $t \notin \text{Span}(u_1, \ldots, u_r)$, then there is a hyperplane V_0 such that $\text{Span}(u_1, \ldots, u_r) \subset V_0$ and $V = V_0 \oplus \langle t \rangle$. Given a generator w with direction u, we
have a decomposition; \(V = \langle u \rangle \oplus \ker(w-1) \). Let us write \(V_w = V_0 \cap \ker(w-1) \). We claim \(V_0 = \langle u \rangle \oplus V_w \). In fact, we see that \(\ker(w-1) = V_w \oplus U \) for some subspace \(U \).

Since \(V_0 \cap U = 0 \), we get \(V_0 \oplus U \subset V \) so that \(\dim U \leq 1 \) and hence \(\dim V_w \geq n - 2 \). We notice that \(V_w \neq \ker(w-1) \) since \(t \notin V_0 \). Therefore, \(\dim V_w = n - 2 \). We now see that \(w \cdot V_0 \subset V_0 \) since \(w((u)) \subset \langle u \rangle \) and \(w \) fixes \(V_w \) pointwise. Thus \(V_0 \) is invariant under the \(W \)-action and hence \(W \) is reducible with respect to \(t \). This completes the proof.

3. **Proof of the Theorem.** First assume that \(p \) divides \(n \). By Borel [3, Proposition 29.2], we see that \(H^*(BU(n) : F_p) = H^*(BT^n : F_p) S_n \) where \(S_n \) is the symmetric group. Suppose that \(H^*(BU(n) : F_p) \) is \(A^* \)-decomposable. According to Proposition 1, there is an \(A^* \)-isomorphism \(\theta \) from \(H^*(BU(n) : F_p) \) to \(H^*(BT^{n_1} : F_p)^{W_1} \otimes H^*(BT^{n_2} : F_p)^{W_2} \) for some integers \(n_1 \) and \(n_2 \) and some suitable groups \(W_1 \) and \(W_2 \) because each \(A^* \)-algebra is a retract. By Adams and Wilkerson [2, Proposition 1.10], we can find an \(A^* \)-map \(\phi \) which makes the following diagram commutative:

\[
\begin{array}{ccc}
H^*(BT^n : F_p) & \xrightarrow{\phi} & H^*(BT^{n_1+n_2} : F_p) \\
\uparrow & & \uparrow \\
H^*(BU(n) : F_p) & \xrightarrow{\theta} & H^*(BT^{n_1} : F_p)^{W_1} \otimes H^*(BT^{n_2} : F_p)^{W_2}.
\end{array}
\]

In this diagram the vertical maps are injective. If \(W = W_1 \times W_2 \), then clearly

\[
H^*(BT^{n_1} : F_p)^{W_1} \otimes H^*(BT^{n_2} : F_p)^{W_2} = H^*(BT^{n_1+n_2} : F_p)^W.
\]

Recall that \(H^*(BU(n) : F_p) \) is a polynomial ring in \(n \) variables. Thus the maximum number of elements in \(H^*(BT^{n_1+n_2} : F_p)^W \) which can be algebraically independent over \(F_p \) is \(n \); so we have \(n_1 + n_2 = n \).

Recall that \(H^*(BU(n) : F_p) \hookrightarrow H^*(BT^n : F_p) \) is a Galois extension with Galois group \(S_n \). Lang [5, p. 247] shows that for any \(w \in W \) there exists \(\sigma \in S_n \) such that \(w \phi = \phi \sigma \). We claim that \(\phi \) is invertible. In fact, if an \(A^* \)-map \(\psi \) covers \(\theta^{-1} \), then \(\psi \cdot \phi \) covers \(\theta^{-1} \cdot \theta = \text{identity} \); so the map \(\psi \cdot \phi \) differs from the identity map by a permutation. Thus \(\phi \) is invertible and hence bijective for dimensional reason. Consequently \(\sigma = \phi^{-1} \cdot w \phi \). Thus it follows that, if \(H^*(BU(n) : F_p) \) is \(A^* \)-decomposable, then the group \(S_n \) is conjugate to \(W_1 \times W_2 \) in \(\text{GL}(n : F_p) \). It is well known that the symmetric group is not the product of two nontrivial subgroups. Consequently one of the \(W_i \)'s must be trivial and it follows that this representation of \(S_n \) is reducible with respect to an \(S_n \)-invariant vector.

Regard \(H^2(BT^n : F_p) \) as a vector space over \(F_p \) with basis \(t_1, \ldots, t_n \). The symmetric group acts on this vector space by the rule \(\sigma(t_i) = t_{\sigma(i)} \). Recall that \(S_n \) is generated by the transpositions \(\sigma_1, \ldots, \sigma_{n-1} \) where \(\sigma_i = (i, i+1) \) and that the vector \(t = \sum_{i=1}^n t_i \) is \(S_n \)-invariant.

Suppose \(p \) is odd. Each \(\sigma_i \) is a pseudo-reflection and the vector \(u_i = t_i - t_{i+1} \) is a direction. Since the representation of \(S_n \) is reducible with respect to \(t \), Proposition 2 shows that the \(S_n \)-invariant vector \(t \) does not belong to \(\text{Span}(u_1, \ldots, u_{n-1}) \). Thus \(\{u_1, \ldots, u_{n-1}, t\} \) must be a basis. Equivalently the following \(n \times n \) matrix must be
nonsingular:
\[
\begin{pmatrix}
1 & 1 \\
-1 & 0 \\
\vdots & \vdots \\
0 & \ddots \\
\end{pmatrix}
\]
Since the determinant of the matrix is n, the prime p does not divide n. This contradicts our assumption.

In the case $p = 2$, it is enough to show that there is no such hyperplane V_0 when n is even. We recall that V has basis t_1, \ldots, t_n. Suppose that V_0 exists. Since S_n acts on V_0, without loss of generality we may assume that $t_1 + \cdots + t_m$ is contained in V_0 for some $m < n$. If $m = 1$, then we can find $\sigma \in S_n$ such that $t_i = \sigma t_1$. Thus each t_i belongs to V_0. But $\dim V_0 = n - 1$, thus $m > 1$. If $m = 2$, then for each $k = 2, \ldots, n$ we can find permutations $\tau_1, \ldots, \tau_{k-1}$ such that
\[
t_1 + t_k = \sum_{r=1}^{k-1} (t_r + t_{r+1}) = \sum_{r=1}^{k-1} \tau_r (t_1 + t_2).
\]
Thus, each $t_1 + t_k \in V_0$ and hence $t = \sum_{k=2}^{n} (t_1 + t_k)$ is contained in V_0 since n is even. This contradicts the assumption $V = V_0 \oplus (t)$. Therefore, $2 < m < n$. Then we have, however, that
\[
t_m + t_{m+1} = t_1 + \cdots + t_m + \sigma_m (t_1 + \cdots + t_m) \in V_0
\]
and therefore $t_1 + t_2 \in V_0$. This is also a contradiction. We now conclude that V_0 does not exist.

Next assume that p does not divide n. Consider the map $f: T^1 \times SU(n) \to U(n)$ given by
\[
f(z, A) = \begin{pmatrix}
z \\
\vdots \\
z
\end{pmatrix} \cdot A
\]
where $z \in T^1$ and $A \in SU(n)$. It is easy to see that this map is a homomorphism with fibre \mathbb{Z}/n. On the level of classifying spaces, this map induces another fibration
\[
B\mathbb{Z}/n \to BT^1 \times BSU(n) \xrightarrow{Bf} BU(n).
\]
Localization preserves fibrations; consequently, when this fibration is localized at p, the fibre $B\mathbb{Z}/n$ becomes contractible since p does not divide n. Hence the map Bf becomes a homotopy equivalence.

It remains to show that $BSU(n)$ and BT^1 are irreducible at p. For BT^1, this is obvious because $BT^1(p) = K(\mathbb{Z}_{(p)}, 2)$. For $BSU(n)$, the argument is very similar to the one used before. Namely, if $BSU(n)$ split as a product at the prime p, then it would follow that the representation of its Weyl group S_n in $GL(n-1; \mathbb{F}_p)$ would be conjugate to a product. Just as before, it would follow that this representation would, in fact, be reducible with respect to a nonzero S_n-invariant vector t'. But such a vector would correspond to a generator of $H^2(BSU(n); \mathbb{F}_p) = 0$. This contradiction completes the proof of the Theorem.
A p-LOCAL SPLITTING OF $BU(n)$

REFERENCES

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202