Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuity of the inverse


Author: Helmut Pfister
Journal: Proc. Amer. Math. Soc. 95 (1985), 312-314
MSC: Primary 22A05
DOI: https://doi.org/10.1090/S0002-9939-1985-0801345-5
MathSciNet review: 801345
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a simple device for proving the continuity of the inverse in a group with a locally Čech-complete topology which makes the multiplication continuous; our proof even works in case the topology is regular and locally strongly countably complete.


References [Enhancements On Off] (What's this?)

  • [1] N. Brand, Another note on the continuity of the inverse, Arch. Math. 39 (1982), 241-245. MR 682451 (84b:22001)
  • [2] R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957), 372-373. MR 0083681 (18:745d)
  • [3] -, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 0088674 (19:561b)
  • [4] R. Engelking, General topology, PWN, Warszawa, 1977. MR 0500780 (58:18316b)
  • [5] Z. Frolík, Baire spaces and some generalisations of complete metric spaces, Czechoslovak Math. J. 11 (1961), 237-247. MR 0124870 (23:A2180)
  • [6] D. Montgomery, Continuity in topological groups, Bull. Amer. Math. Soc. 42 (1936), 879-882. MR 1563458
  • [7] W. Żelasko, A theorem on $ {B_0}$ division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375. MR 0125901 (23:A3198)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05

Retrieve articles in all journals with MSC: 22A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0801345-5
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society