Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Monic polynomials and generating ideals efficiently


Author: Budh Nashier
Journal: Proc. Amer. Math. Soc. 95 (1985), 338-340
MSC: Primary 13C05; Secondary 13F20
DOI: https://doi.org/10.1090/S0002-9939-1985-0806066-0
MathSciNet review: 806066
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ I$ is an ideal containing a monic polynomial in $ R[T]$ where $ R$ is a semilocal ring, then $ I$ and $ I/{I^2}$ require the same minimal number of generators. An ideal containing a monic polynomial in a polynomial ring need not possess any minimal set of generators having a monic as a part of it.


References [Enhancements On Off] (What's this?)

  • [1] D. Ferrand, Suites régulière et intersection complète, C. R. Acad. Sci. Paris Ser. A 264 (1967), A427-A428. MR 0219546 (36:2626)
  • [2] A. V. Geramita and C. Small, Introduction to homological methods in commutative rings, Queen's Papers in Pure and Applied Mathematics, Vol. 43 (2nd ed.), Kingston, Ontario, Canada, 1979.
  • [3] T. Y. Lam, Serre's conjecture, Lecture Notes in Math., No. 635, Springer-Verlag, Berlin and Heidelberg, 1978. MR 0485842 (58:5644)
  • [4] S. Mandal, On efficient generation of ideals, Invent. Math. 75 (1984), 59-67. MR 728138 (85d:13017)
  • [5] W. Vasconcelos, Ideals generated by $ R$-sequences, J. Algebra 6 (1967), 309-316. MR 0213345 (35:4209)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C05, 13F20

Retrieve articles in all journals with MSC: 13C05, 13F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806066-0
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society