Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some modular identities of Ramanujan useful in approximating $ \pi$


Author: Jon Borwein
Journal: Proc. Amer. Math. Soc. 95 (1985), 365-371
MSC: Primary 11F03; Secondary 11J72, 41A25
DOI: https://doi.org/10.1090/S0002-9939-1985-0806072-6
MathSciNet review: 806072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show how various modular identities due to Ramanujan may be used to produce simple high order approximations to $ \pi $. Various specializations are considered and the Gaussian arithmetic geometric mean formula for $ \pi $ is rederived as a consequence.


References [Enhancements On Off] (What's this?)

  • [1] R. Bellman, A brief introduction to theta functions, Holt, Rinehart and Winston, New York, 1961. MR 0125252 (23:A2556)
  • [2] B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7 (1977), 147-189. MR 0429703 (55:2714)
  • [3] J. M. Borwein and P. B. Borwein, The arithmetic-geometric mean and fast computation of elementary functions, SIAM Rev. 26 (1984), 351-366. MR 750454 (86d:65029)
  • [4] -, Elliptic integrals and approximations to pi, Dalhousie Research Report, 1984.
  • [5] -, The arithmetic-geometric mean and its relatives with applications in number theory, Analysis and complexity theory (in preparation).
  • [6] R. P. Brent, Fast multiple precision evaluation of elementary functions, J. Assoc. Comput. Mach. 23 (1976), 242-251. MR 0395314 (52:16111)
  • [7] A. Cayley, An elementary treatise on elliptic functions, Bell and Sons, 1885, reprinted by Dover, 1961. MR 0124532 (23:A1844)
  • [8] G. H. Hardy, Ramanujan, Chapter 12, Cambridge Univ. Press, 1960.
  • [9] Ramanujan, Modular equations and approximations to $ \pi $, Quart. J. Math. 45 (1914), 350-372.
  • [10] E. Salamin, Computation of $ \pi $ using arithmetic-geometric mean, Math. Comp. 135 (1976), 565-570. MR 0404124 (53:7928)
  • [11] Y. Tamura and Y. Kanada, Calculation of $ \pi $ to 4,196,393 decimals based on Gauss Legendre algorithm, preprint.
  • [12] G. N. Watson, Some singular moduli (1) and (2), Quart. J. Math 3 (1932), 81-98 and 189-212.
  • [13] E. T. Whittaker and G. N. Watson, A course of modern analysis (4th ed.), Cambridge Univ. Press, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11F03, 11J72, 41A25

Retrieve articles in all journals with MSC: 11F03, 11J72, 41A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806072-6
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society