Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the spectra of $ C\sb {11}$-contractions


Authors: H. Bercovici and L. Kérchy
Journal: Proc. Amer. Math. Soc. 95 (1985), 412-418
MSC: Primary 47A20; Secondary 47A10, 47A45
DOI: https://doi.org/10.1090/S0002-9939-1985-0806079-9
MathSciNet review: 806079
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a complete characterization of the closed subsets of the complex plane that can serve as spectra of completely nonunitary contractions of class $ {C_{11}}$.


References [Enhancements On Off] (What's this?)

  • [1] H. Bercovici and L. Kérchy, Quasisimilarity and properties of the commutant of $ {C_{11}}$ contractions, Acta Sci. Math. (Szeged) 45 (1983), 67-74. MR 708772 (85c:47010)
  • [2] N. Dunford and J. Schwartz, Linear operators. Part II, Wiley, New York, 1963. MR 1009163 (90g:47001b)
  • [3] G. Eckstein, On the spectrum of contractions of class $ C{._1}$, Acta Sci. Math. (Szeged) 39 (1977), 251-254. MR 0493440 (58:12447)
  • [4] C. Foiaş and W. Mlak, The extended spectrum of completely nonunitary contractions and the spectral mapping theorem, Studia Math. 26 (1966), 239-245. MR 0200722 (34:610)
  • [5] G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Mono., Vol. 26, Amer. Math. Soc., Providence, R. I., 1969; reprinted 1983. MR 0247039 (40:308)
  • [6] L. Kérchy, On the commutant of $ {C_{11}}$-contractions, Acta Sci. Math. (Szeged) 43 (1981), 15-26. MR 621349 (82g:47008)
  • [7] -, On invariant subspace lattices of $ {C_{11}}$-contractions, Acta Sci. Math. (Szeged) 43 (1981), 281-293. MR 640305 (83j:47010)
  • [8] F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [9] B. Sz.-Nagy and C. Foiaş, Corrections et compléments aux Contactions. IX, Acta Sci. Math. (Szeged) 26 (1965), 193-196. MR 0196502 (33:4689)
  • [10] -, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam 1970.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A20, 47A10, 47A45

Retrieve articles in all journals with MSC: 47A20, 47A10, 47A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806079-9
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society