Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Hörmander type criterion for quasiradial Fourier multipliers


Authors: Henry Dappa and Hajo Luers
Journal: Proc. Amer. Math. Soc. 95 (1985), 419-424
MSC: Primary 42B15; Secondary 46E35
DOI: https://doi.org/10.1090/S0002-9939-1985-0806080-5
MathSciNet review: 806080
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We state practicable sufficient conditions on quasi-radial functions $ m \circ \rho (\xi ) = m(\rho (\xi ))$ to be Fourier multipliers in $ {L^p}({{\mathbf{R}}^n})$. Here $ m$ is a bounded function and $ \rho $ is a homogeneous distance function. The conditions on $ m$ are given in terms of localized Bessel potentials and those on $ \rho $ reflect and generalize basic properties of the norm in $ {{\mathbf{R}}^n}$. The results are related to those of Madych [7] and Fabes and Rivière [3] and improve their results (specialized to quasi-radial multipliers). The proof utilizes Madych's approach [7] and interpolation properties of localized Bessel potential spaces [2].


References [Enhancements On Off] (What's this?)

  • [1] O. V. Besov, V. P. Il' in and P. I. Lizorkin, $ {L^p}$-estimates of a certain class of nonisotropic singular integrals, Soviet Math. Dokl. 7 (1966), 1065-1069.
  • [2] W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. No. 183 (1977). MR 0435708 (55:8666)
  • [3] E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38. MR 0209787 (35:683)
  • [4] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 0320624 (47:9160)
  • [5] G. Gasper and W. Trebels, A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math. 65 (1979), 243-278. MR 567079 (81k:46030)
  • [6] J. Löfström, Some theorems on interpolation spaces with applications to approximation in $ {L^p}$, Math. Ann. 172 (1967), 176-196. MR 0218814 (36:1898)
  • [7] W. R. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43-63. MR 0344797 (49:9536)
  • [8] J. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique, Ricerche Mat. 15 (1966), 3-36. MR 0221214 (36:4266)
  • [9] J. Peral and A. Torchinsky, Multipliers in $ {H^p}({{\mathbf{R}}^n})$, $ 0 < p < \infty $, Ark. Mat. 17 (1979), 224-235. MR 608317 (83e:42022)
  • [10] N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278. MR 0440268 (55:13146)
  • [11] S. Sjöstrand, On the Riesz means of the solution of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1970), 331-348. MR 0270219 (42:5110)
  • [12] E. M. Stein, Classes $ {H^p}$ et multiplicateurs: Cas $ n$-dimensionnel, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A107-A108.
  • [13] -, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1971.
  • [14] E. M. Stein and S. Wainger, Problems in harmonic analysis related to the curvature, Bull. Amer. Math. Soc. (N. S.) 84 (1978), 1239-1295. MR 508453 (80k:42023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15, 46E35

Retrieve articles in all journals with MSC: 42B15, 46E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806080-5
Keywords: Fourier multipliers, Hörmander criterion
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society