A nonlinear boundary problem
Author:
John R. Hatcher
Journal:
Proc. Amer. Math. Soc. 95 (1985), 441448
MSC:
Primary 30E25; Secondary 45E10
MathSciNet review:
806084
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A nonlinear Hilbert problem of power type is solved in closed form by representing a sectionally holomorphic function by means of an integral with power kernel. This technique transforms the problem to one of solving an integral equation of the generalized Abel type.
 [1]
K.
D. Sakalyuk, Abel’s generalized integral equation,
Soviet Math. Dokl. 1 (1960), 332–335. MR 0117520
(22 #8299)
 [2]
N.
I. Muskhelishvili, Singular integral equations,
WoltersNoordhoff Publishing, Groningen, 1972. Boundary problems of
functions theory and their applications to mathematical physics; Revised
translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
(50 #7968)
 [3]
Norman
Levinson, Simplified treatment of integrals of Cauchy type, the
Hilbert problem and singular integral equations. Appendix:
PoincaréBertrand formula, SIAM Rev. 7 (1965),
474–502. MR 0185398
(32 #2865)
 [4]
Wilhelm
Magnus, Fritz
Oberhettinger, and Raj
Pal Soni, Formulas and theorems for the special functions of
mathematical physics, Third enlarged edition. Die Grundlehren der
mathematischen Wissenschaften, Band 52, SpringerVerlag New York, Inc., New
York, 1966. MR
0232968 (38 #1291)
 [1]
 K. D. Sakalyuk, The generalized Abel integral equation, Dokl. Akad. Nauk SSSR 131 (1960), 748751. MR 0117520 (22:8299)
 [2]
 N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Noordhoff, Groningen, 1953, pp. 4243. MR 0355494 (50:7968)
 [3]
 Norman Levinson, Simplified treatment of integrals of Cauchy type, the Hilbert problem and singular integral equations. Appendix: PoincaréBertrand formula, SIAM Rev. 7 (1965), 487488. MR 0185398 (32:2865)
 [4]
 M. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, SpringerVerlag, Berlin and New York, 1966, p. 47. MR 0232968 (38:1291)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
30E25,
45E10
Retrieve articles in all journals
with MSC:
30E25,
45E10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198508060842
PII:
S 00029939(1985)08060842
Keywords:
Cauchy integral,
Plemelj formulae,
nonhomogeneous boundary value problem
Article copyright:
© Copyright 1985
American Mathematical Society
