Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spherical quadrature and inversion of Radon transforms


Authors: W. R. Madych and S. A. Nelson
Journal: Proc. Amer. Math. Soc. 95 (1985), 453-457
MSC: Primary 65D32; Secondary 44A15
DOI: https://doi.org/10.1090/S0002-9939-1985-0806086-6
MathSciNet review: 806086
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An equivalence is established between certain aspects of: (i) mechanical quadrature for integration on a sphere; (ii) a ridge function representation problem connected with inversion of Radon transform data.


References [Enhancements On Off] (What's this?)

  • [1] A. Erdelyi (ed.), Tables of integral transforms, McGraw-Hill, New York, 1954.
  • [2] F. A. Grünbaum, The limited angle reconstruction problem, Computed Tomography (L. A. Shepp, ed.), Proc. Sympos. Appl. Math., Vol. 27, Amer. Math. Soc., Providence, R.I., 1983, pp. 43-61. MR 692053 (84m:92007)
  • [3] B. F. Logan and L. A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J. 42 (1975), 645-659. MR 0397240 (53:1099)
  • [4] W. R. Madych and S. A. Nelson, Characterization of tomographic reconstructions which commute with rigid motions, J. Funct. Anal. 46 (1982), 258-263. MR 660190 (84d:92010)
  • [5] -, Polynomial based algorithms for computed tomography. II, SIAM J. Appl. Math. 44 (1984), 193-208. MR 730010 (85k:92015)
  • [6] -, Radial sums of ridge functions: a characterization, Math. Methods Appl. Sci. 7 (1985), 90-100. MR 783388 (86k:92006)
  • [7] A. D. McLaren, Optimal numerical integration on a sphere, Math. Comp. 17 (1963), 361-383. MR 0159418 (28:2635)
  • [8] K. T. Smith, Reconstruction formulas in computed tomography, Computed Tomography (L. A. Shepp, ed.), Proc. Sympos. Appl. Math., Vol. 27, Amer. Math. Soc., Providence, R.I., 1983, pp. 7-23. MR 692050 (84f:92013)
  • [9] L. A. Shepp and J. B. Kruskal, Computerized tomography: the new medical $ {\text{X}}$-ray technology, Amer. Math. Monthly 85 (1978), 420-439. MR 1538734
  • [10] A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, N.J., 1971. MR 0327006 (48:5348)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 65D32, 44A15

Retrieve articles in all journals with MSC: 65D32, 44A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806086-6
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society