Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Embedded minimal surfaces in $ 3$-manifolds with positive scalar curvature


Author: J. H. Rubinstein
Journal: Proc. Amer. Math. Soc. 95 (1985), 458-462
MSC: Primary 53C42; Secondary 53A10, 57N10
MathSciNet review: 806087
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a closed orientable Riemannian $ 3$-manifold with positive scalar curvature. We prove that any embedded closed minimal surface in $ M$ has a topological description as a generalized Heegaard surface. Also an existence theorem is proved which gives examples of such minimal surfaces.


References [Enhancements On Off] (What's this?)

  • [1] Joan S. Birman, On the equivalence of Heegaard splittings of closed, orientable 3-manifolds, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N.J., 1975, pp. 137–164. Ann. of Math. Studies, No. 84. MR 0375318
  • [2] Glen E. Bredon and John W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83–110. MR 0246312
  • [3] Francis Bonahon and Jean-Pierre Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 451–466 (1984) (French). MR 740078
  • [4] Renate Engmann, Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlecht 2 der zusammenhängenden Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1970), 33–38 (German). MR 0283803
  • [5] Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, 10.2307/1971103
  • [6] M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, preprint.
  • [7] Wolfgang Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39–98. MR 0224071
  • [8] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306. MR 664497
  • [9] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Deutsch. Math.-Verein. 38 (1929), 248-260.
  • [10] H. Blaine Lawson Jr., Complete minimal surfaces in 𝑆³, Ann. of Math. (2) 92 (1970), 335–374. MR 0270280
  • [11] H. Blaine Lawson Jr., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183–187. MR 0287447
  • [12] William Meeks III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659. MR 678484, 10.2307/2007026
  • [13] J. Milnor, A unique factorization theorem for $ 3$-manifolds, Amer. J. Math. 84 (1962), 1-7.
  • [14] J. H. Rubinstein, One-sided Heegaard splittings of 3-manifolds, Pacific J. Math. 76 (1978), no. 1, 185–200. MR 0488064
  • [15] J. H. Rubinstein and L. Simon, Minimal surfaces invariant under groups of isometries in $ 3$-manifolds (in preparation).
  • [16] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183. MR 535700, 10.1007/BF01647970
  • [17] R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, 10.2307/1971247
  • [18] Richard Schoen and Shing Tung Yau, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 209–228. MR 645740
  • [19] Friedhelm Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), 195–203 (German). MR 0227992

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 53A10, 57N10

Retrieve articles in all journals with MSC: 53C42, 53A10, 57N10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0806087-8
Keywords: Minimal surface, generalized Heegaard surface, positive scalar curvature
Article copyright: © Copyright 1985 American Mathematical Society