Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embedded minimal surfaces in $ 3$-manifolds with positive scalar curvature


Author: J. H. Rubinstein
Journal: Proc. Amer. Math. Soc. 95 (1985), 458-462
MSC: Primary 53C42; Secondary 53A10, 57N10
DOI: https://doi.org/10.1090/S0002-9939-1985-0806087-8
MathSciNet review: 806087
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a closed orientable Riemannian $ 3$-manifold with positive scalar curvature. We prove that any embedded closed minimal surface in $ M$ has a topological description as a generalized Heegaard surface. Also an existence theorem is proved which gives examples of such minimal surfaces.


References [Enhancements On Off] (What's this?)

  • [1] J. S. Birman, On the equivalence of Heegaard splittings of closed orientable $ 3$-manifolds, Ann. of Math. Studies (L. Neuwirth, ed.), no. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 137-164. MR 0375318 (51:11513)
  • [2] G. Bredon and J. Wood, Nonorientable surfaces in orientable $ 3$-manifolds, Invent. Math. 7 (1969), 83-110. MR 0246312 (39:7616)
  • [3] F. Bonahon and J-P. Otal, Scindements de Heegaard des espaces lenticulaires, preprint. MR 740078 (85c:57010)
  • [4] R. Engmann, Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlecht 2 der zusammenhängen Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1970), 33-38. MR 0283803 (44:1033)
  • [5] M. Gromov and H. B. Lawson, Jr., The classification of simply-connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423-434. MR 577131 (81h:53036)
  • [6] M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, preprint.
  • [7] W. Haken, Some results on surfaces in $ 3$-manifolds, Studies in Modern Topology (P. Hilton, ed.), Math. Assoc. Amer., Prentice-Hall, Englewood Cliffs, N. J., 1968, pp. 39-98. MR 0224071 (36:7118)
  • [8] R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. MR 664497 (84a:53050)
  • [9] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Deutsch. Math.-Verein. 38 (1929), 248-260.
  • [10] H. B. Lawson, Jr., Complete minimal surfaces in $ {S^3}$, Ann. of Math. (2) 92 (1970), 335-374. MR 0270280 (42:5170)
  • [11] -, The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183-187. MR 0287447 (44:4651)
  • [12] W. Meeks, L. Simon and S-T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), 621-659. MR 678484 (84f:53053)
  • [13] J. Milnor, A unique factorization theorem for $ 3$-manifolds, Amer. J. Math. 84 (1962), 1-7.
  • [14] J. H. Rubinstein, One-sided Heegaard splittings of $ 3$-manifolds, Pacific J. Math. 76 (1978), 185-200. MR 0488064 (58:7635)
  • [15] J. H. Rubinstein and L. Simon, Minimal surfaces invariant under groups of isometries in $ 3$-manifolds (in preparation).
  • [16] R. Schoen and S-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159-183. MR 535700 (80k:53064)
  • [17] -, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with non-negative scalar curvature, Ann. of Math. (2) 110 (1979), 127-142. MR 541332 (81k:58029)
  • [18] -, Complete three dimensional manifolds with positive Ricci curvature and scalar curvature, Ann. of Math. Studies (S-T. Yau, ed.), no. 102, Princeton Univ. Press, Princeton, N. J., 1982, pp. 209-228. MR 645740 (83k:53060)
  • [19] F. Waldhausen, Heegaard-Zerlegungen der $ 3$-sphäre, Topology 7 (1968), 195-203. MR 0227992 (37:3576)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 53A10, 57N10

Retrieve articles in all journals with MSC: 53C42, 53A10, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806087-8
Keywords: Minimal surface, generalized Heegaard surface, positive scalar curvature
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society