Inverse systems of absolute retracts and almost continuity

Author:
Vladimir N. Akis

Journal:
Proc. Amer. Math. Soc. **95** (1985), 499-502

MSC:
Primary 54C10; Secondary 54B25, 54C55, 54H15, 54H25

MathSciNet review:
806096

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that is the inverse limit of a sequence of absolute retracts such that each bonding map is a retraction. We show that is the almost continuous retract of the Hilbert cube. It follows that , the cone over , the suspension of , and the product of with any absolute retract must have the fixed point property.

**[1]**Vladimir N. Akis,*Fixed point theorems and almost continuity*, Fund. Math.**121**(1984), no. 2, 133–142. MR**765329****[2]**Karol Borsuk,*Theory of retracts*, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR**0216473****[3]**B. D. Garrett,*Almost continuous retracts*, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 229–238. MR**619046****[4]**W. Holsztyński,*Universal mappings and fixed point theorems*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**15**(1967), 433–438 (English, with Loose Russian summary). MR**0221493****[5]**Kenneth R. Kellum,*Almost continuous images of Peano continua*, Topology Appl.**11**(1980), no. 3, 293–296. MR**585274**, 10.1016/0166-8641(80)90028-0**[6]**Edwin E. Moise,*An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua*, Trans. Amer. Math. Soc.**63**(1948), 581–594. MR**0025733**, 10.1090/S0002-9947-1948-0025733-4**[7]**J. Stallings,*Fixed point theorems for connectivity maps*, Fund. Math.**47**(1959), 249–263. MR**0117710**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54C10,
54B25,
54C55,
54H15,
54H25

Retrieve articles in all journals with MSC: 54C10, 54B25, 54C55, 54H15, 54H25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1985-0806096-9

Article copyright:
© Copyright 1985
American Mathematical Society