LIMIT THEOREMS FOR DIVISOR DISTRIBUTIONS

MICHAEL D. VOSE

ABSTRACT. For a positive integer N, let X_N be a random variable uniformly distributed over the set $\{\log d \mid d \mid N\}$. Let F_N be the normalized (to have expectation zero and variance one) distribution function for X_N. Necessary and sufficient conditions for the convergence of a sequence F_N of distributions are given. The possible limit distributions are investigated, and the case where the limit distribution is normal is considered in detail.

1. Introduction. Let the positive integer N have prime factorization $N = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$. Define $\mu_n(N)$, for positive integer n, by

$$\mu_n = \left(12^{-1} \sum_{1 \leq j \leq k} ((\alpha_j + 1)^n - 1)(\log p_j)^n\right)^{1/n}.$$

The divisor distribution of N refers to the function

$$F_N(x) = \tau^{-1} \sum_{d \mid N} \frac{1}{d}$$

where τ is the number of divisors of N, and the sum is restricted to those divisors satisfying $\log(d/\sqrt{N}) \leq x\mu_2$.

In this paper, we determine when a sequence of divisor distributions tends to a limit, and investigate the limit distributions that arise. Erdős and Nicolas [2] had previously shown the divisor distribution of $N_j = \prod_{p < j} p$ (we reserve the letters p and q for primes) to be asymptotically normal as $j \to \infty$. With regard to the normal distribution we prove

THEOREM 2. The normal distribution

$$\Phi(x) = (2\pi)^{-1/2} \int_{-\infty}^{x} \exp\left(-\frac{1}{2} t^2\right) dt$$

is the only infinitely divisible distribution that can arise as the limit of a sequence F_{N_j} of divisor distributions. A necessary and sufficient condition for convergence is that

$$\lim_{j \to \infty} \left(\mu_2(N_j)\right)^{-1} \mu_\infty(N_j) = 0.$$

Moreover,

$$\sup_w |F_{N_j}(w) - \Phi(w)| \ll \frac{\mu_{\infty}}{\mu_2}.$$

Received by the editors November 11, 1984 and, in revised form, February 1, 1985.

1980 Mathematics Subject Classification. Primary 10L10.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page
and

\[\left| \frac{1 - F_N(x)}{1 - \Phi(x)} - 1 \right| \ll \left(x + \frac{1}{x} \right) \frac{\mu_4}{\mu_2} \]

for \(x \leq \mu^{-1} \).

Here \(\mu_\infty(N) \) means \(\lim_{n \to \infty} \mu_n(N) \).

We define the (Fourier) transform of a distribution \(F \) as

\[\hat{F}(t) = \int_R e^{2\pi i tx} dF(x). \]

If \(\hat{F}(t) \) is the restriction to \(R \) of an entire function, we say that \(\hat{F} \) is entire. In the general case we have

Theorem 1. A necessary and sufficient condition for a sequence \(F_N \) of divisor distributions to converge to a distribution \(F \) is that for each \(n \) the limits \(a_n = \lim_{j \to \infty} \mu_{2n}(N_j)(\mu_2(N_j))^{-1} \) exist. In this case \(\hat{F} \) is entire and is represented in the disk \(|z| < 1/4 \) by

\[\hat{F}(z) = \exp \left(-\sum_{n=1}^{\infty} (n(2n)!)^{-1} 6B_n(2\pi a_n z)^{2n} \right), \]

where

\[B_n = 4n \int_0^{\infty} \left(e^{2\pi t} - 1 \right)^{-1} t^{2n-1} dt \]

are the Bernoulli numbers.

We say that a sequence \(F_j \) of distributions converges to \(F \), if \(F_j(\pm \infty) \to F(\pm \infty) \), and \(F_j(x) \to F(x) \) at all continuity points \(x \) of \(F \).

A reasonable characterization of the possible limit distributions seems difficult. We do however have the following “factoring theorem”:

Theorem 3. Suppose the sequence \(F_N \) of divisor distributions converges to \(F \). If \(F \) is not a finite point mass distribution then, for some \(\phi \in [0, \pi/2) \),

\[F(x) = G(x \sec \phi) * H(x \csc \phi). \]

The convolution factor \(G \) is a normal, uniform, or singular distribution. \(H \) is the limit of a sequence of divisor distributions when \(\phi > 0 \), and otherwise is to be interpreted as point mass at 0. Moreover, if \(\liminf_{j \to \infty} \omega(N_j) = K < \infty \), then \(F \) may be written as a convolution product involving no more than \(K \) uniform or arithmetic distributions.

Here \(\omega(N) \) is the number of distinct prime divisors of \(N \). A finite point mass distribution is a finite convolution of arithmetic distributions. An arithmetic distribution is a probability distribution with zero expectation, and, a step function, whose finitely many jump discontinuities are of equal height and occur along an arithmetic progression. A uniform distribution has density \((12)^{-1/2} \chi_{[-\sqrt{3}, \sqrt{3}]} \) (where \(\chi_I \) is the indicator of the interval \(I \)), and a singular distribution is continuous with zero derivative almost everywhere.
2. Necessary and sufficient conditions.

Lemma 1. The transform \hat{F}_N of the divisor distribution of N is an entire function which is represented in the disk $|z| < \mu_2 \mu_{\infty}^{-1}$ by

$$\hat{F}_N(z) = \exp\left(-\sum_{n=1}^{\infty} (n(2n)!)^{-1}B_n\left(\mu_2 \mu_{\infty}^{-1} 2\pi z\right)^2\right).$$

Proof. \hat{F}_N is entire since dF_N is compactly supported. For notational convenience, let $u = \pi \mu_{\infty}^{-1} t$. The transform of F_n is

$$F(t) = \prod_{j=1}^{k} \left((\alpha_j + 1) \sin(u \log p_j)\right)^{-1} \sin(u (\alpha_j + 1) \log p_j).$$

Taking the logarithm of (2.1) yields

$$\hat{F}(t) = \exp\left(\sum_{j=1}^{k} \int_{0}^{\infty} u(u_j + 1) \log p_j \right) \cot x - x^{-1} dx \right).$$

Substituting the power series for $\cot x - x^{-1}$ in (2.2), integrating term by term, and interchanging the order of summation completes the proof. \(\square\)

Corollary 1. If $|y| < \lambda < 1/4$, then $F_N(x + iy) \ll 1$. Also, \hat{F} has a zero at $\mu_2 \mu_{\infty}^{-1}$.

Proof. (2.1) shows that $\hat{F}_N(\mu_2 \mu_{\infty}^{-1}) = 0$. If m is a positive integer, $m < 2n$, then

$$\mu_2 \mu_{\infty}^{-1} \leq (1 - 2^{-m})^{-1/m} 12^{1/m - 1/2}.$$

Since $\hat{F}_N(x + iy) \ll \hat{F}_N(0)$, using inequality (2.3) in Lemma 1 completes the proof.

Proof of Theorem 1. By Corollary 1, the collection $\mathcal{F} = \{\hat{F}_{N_j}\}_{j=1}^{\infty}$ of analytic functions is uniformly bounded on compact subsets of $G_\lambda = \{x + iy \in \mathbb{C}: |y| < \lambda < 1/4\}$. Therefore, Montel's theorem \([1]\) implies that any sequence of functions from \mathcal{F} has a subsequence which converges uniformly on compact subsets of G_λ. This, together with the representation of \hat{F}_N provided by Lemma 1, implies that the sequence \hat{F}_{N_j} converges to a function H if and only if the limits a_n exist, and in such case,

$$H(z) = \exp\left(-\sum_{n=1}^{\infty} (n(2n)!)^{-1}B_n\left(a_n 2\pi z\right)^2\right).$$

in the disk $|z| < 1/4$. It follows from the continuity theorem for Fourier-Stieltjes transforms that the convergence of \hat{F}_{N_j} to such a function H is equivalent to the convergence of F_{N_j} to some distribution F, and in such case, $\hat{F} = H$. It remains to show that \hat{F} is entire.

The inequality (for $x \geq 0$)

$$1 - F(x) \leq F(-x) \leq \exp\{-x^2/6\}$$

implies that the sequence of entire functions

$$H_L(z) = \int_{-L}^{L} e^{2\pi izx} dF(x)$$

is uniformly Cauchy on compact subsets of \(\mathbb{C} \). It therefore suffices to prove (2.4). Note that for positive \(\lambda \) and positive \(x \),

\[
1 - F_N(x) \leq F_N(-x) \leq \tau(N)^{-1} \sum_{d|N} \exp \left(-\lambda x + \lambda \mu_2^{-1} \log \frac{\sqrt{N}}{d} \right).
\]

With \(\lambda_j = \lambda \mu_2^{-1} \log p_j \), the right-hand side of (2.5) is equal to

\[
e^{-\lambda \chi} \prod_{j=1}^k \left(\exp \left(\frac{1}{2} a_j \chi \right) \left(\alpha_j + 1 \right)^{-1} \sum_{n=0}^{\alpha_j} \exp \left(-n \lambda \chi \right) \right).
\]

Using the convexity of \(e^x \) and the inequality \(\cosh(x) \leq \exp(x^2/2) \), we see that (2.6) is not greater than \(\exp(-\lambda x + \lambda^2/2) \). Choosing \(\lambda = 3^{-1/4} \) finishes the proof.

Note that our method of proving Theorem 1 (via Montel’s Theorem) shows that any sequence of \(F_{N_j} \) (or \(\hat{F}_{N_j} \)) has a subsequence which converges to some \(F \) (respectively \(\hat{F} \)).

Proof of Theorem 2. Suppose \(F_{N_j} \) converges to \(\Phi \). By Theorem 1, we have

\[
\Phi(t) = \exp \left\{ - \sum_{n=1}^{\infty} \left(n (2n)! \right)^{-1} 6 B_n \left(a_n 2\pi t \right)^{2n} \right\}.
\]

On the other hand, \(\hat{\Phi}(t) = \exp\{-2\pi^2 t^2\} \). It follows that \(a_j = 0 \) for \(j > 1 \). Conversely, if \(a_j = 0 \) for \(j > 1 \), then the sequence \(F_{N_j} \) converges to some distribution \(F \), where \(\hat{F}(t) = \exp\{-2\pi^2 t^2\} \). Hence \(F = \Phi \). It follows that \(\mu_\infty \mu_2^{-1} \to 0 \) is necessary and sufficient since

\[
\mu_\infty \mu_2^{-1} \ll \mu_2 \mu_2^{-1} \ll \left(\mu_\infty \mu_2^{-1} \right)^{1/4}.
\]

If \(F_{N_j} \) does not converge to \(\Phi \), then there is some compact interval of \(\mathbb{R} \) containing infinitely many of the points \(t_j = \mu_2 \left(N_j, \left(\mu_\infty(N_j)^{-1} \right) \right. \). Let \(t^* \) be a limit point. Each \(t_j \) is a zero of \(\hat{F}_{N_j} \) by Corollary 1, so if \(F_{N_j} \) were to converge to \(F \), then \(F(t^*) = 0 \). This precludes the possibility that \(F \) is infinitely divisible, since such distributions have positive transforms.

The first inequality of Theorem 2 is a straightforward application of the following result, referred to as the Berry–Eseen inequality. Let \(F \) and \(G \) be probability distributions, and suppose \(G \) has density \(g \). Then for all \(T > 0 \)

\[
\sup_x |F(x) - G(x)| \ll T^{-1/2} \|g\|_\infty + \int_{-T}^T |t|^{-1} |\hat{F}(t) - \hat{G}(t)| dt
\]

(Feller [3]).

To prove the second inequality of Theorem 2, define the measures \(dV \) and \(dG \) by

\[
dV(x) = e^{-A + yx} dF_N(x), \quad dG(x) = (2\pi)^{-1/2} e^{-\left(x - y \right)^2/2} dx.
\]

Let \(R(x) = \exp(x^2/2)(1 - \Phi(x)) \). Then

\[
\frac{1 - F_N(y)}{1 - \Phi(y)} = e^{y^2/2} R(y)^{-1} \left(I + e^{A - y^2} R(y) \right),
\]

where

\[
I = e^A \int_0^\infty e^{-yx} d \left(V(x) - G(x) \right).
\]
Now define $A - y^2/2$ to be the function
\[
H(y) = -\sum_{n=2}^{\infty} 6B_n(n(2n)!)^{-1}(\mu_{2n}\mu_{y}^{-1}y)^{2n}.
\]

Assuming that $|V(x) - G(x)| \leq \Delta$ and $y > 0$, (2.7) becomes
\[
(2.8) \quad \frac{1 - F_N(y)}{1 - \Phi(y)} = e^{H(y)} + O\left(\Delta R(y) e^{H(y)}\right).
\]

It is well known that $R(y)^{-1} \leq \sqrt{2\pi} (y + y^{-1})$ (see for example Mitrinovic [4]), so the proof is completed by establishing, for $0 < y \leq \mu_2/\mu_4$, the inequalities
\[
(2.9) \quad |H(y)| \ll y^4(\mu_4/\mu_2)^4,
\]
and
\[
(2.10) \quad \Delta \ll \mu_4/\mu_2.
\]

$H(m)$ is the sum of an alternating decreasing sequence, hence (2.9). The Berry–Esseen inequality, with $F = V$ and $G = G$, yields (2.10). \square

3. The factoring theorem.

Lemma 3. If M and N are relatively prime positive integers, then
\[
\hat{F}_{MN}(t) = \hat{F}_M(t\cos \phi) \hat{F}_N(t\sin \phi)
\]
where
\[
\cos \phi = \frac{\mu_2(M)}{\sqrt{(\mu_2(M))^2 + (\mu_2(N))^2}}.
\]

Proof. The functions $(\mu_n(N))^n$ are additive. Therefore, Lemma 1 implies
\[
\hat{F}_{MN}(t\mu_2(MN)) = \hat{F}_M(t\mu_2(M)) \hat{F}_N(t\mu_2(N)),
\]
and Lemma 3 follows.

Lemma 4. Let p and q be primes, and α a positive integer. Then $F_{p^\alpha} = F_{q^\alpha}$ is an arithmetic distribution with discontinuities at the points
\[
\left\{(2\alpha^{-1}k - 1)((\alpha + 2)^{-1}3\alpha)^{1/2}\right\}_{k=0}^\alpha.
\]

As $\alpha \to \infty$, F_{p^α} converges to the uniform distribution U having density $(12)^{-1/2} \chi_{[-\sqrt{3}, \sqrt{3}]}$.

Lemma 4 follows immediately from Lemma 1 and Theorem 1.

Lemma 5. Let F_j be a sequence of arithmetic distributions with $d_j > 1$ discontinuities such that dF_j is supported in $[-1, 1]$. Let s_j be the distance between discontinuities of F_j, and assume v_j is a sequence of positive numbers such that
\[
(1) \quad \sum_{j > J} v_j < \frac{1}{4}s_j v_j \text{ for } J = 1, 2, \ldots,
\]
\[
(2) \quad (\prod_{j=1}^{J} d_j) \sum_{j > J} v_j \to 0 \text{ as } J \to \infty.
\]

Then the convolution $H_k(x) = F(x/v_1) * \cdots * F_k(x/v_k)$ converges to a singular distribution as $k \to \infty$.

The proof is easy, and will be omitted.

We now prove Theorem 3. Let N_j have prime factorization
\[
N_j = p_j(1)^{a_j(1)} \cdots p_j(k_j)^{a_j(k_j)}.
\]
We abbreviate \(p_j(i)^{\alpha_j(i)} \) as \((j, i) \), and use \(\langle x \rangle \) to mean \(2^x \).

First consider the case \(\lim \inf_{j \to \infty} \omega(N_j) = K \). By passing to a subsequence and reindexing, we may assume \(\omega(N_j) = k \), and \((j, k) > (j, l) \) for \(k < l \). Let \(v_j(k) = \mu_2((j, k))(\mu_2(N_j))^{-1} \), and \(M_j(k) = (j, k)^{-1}N_j \). Assume that \(F \) is not a finite point mass distribution.

Repeated use of Lemma 3 gives

\[
(3.1) \quad F_{N_j}(t) = \prod_{k=1}^{K} \hat{F}_{(j,k)}(v_j(k)t).
\]

Since each \(v_j(k) \in [0,1] \), we may pass to a subsequence and assume \(v_j(k) \to v_k \) as \(j \to \infty \). If any \(v_k = 0 \), then \(\hat{F}_{(j,k)}(v_j(k)t) \to 1 \) for all \(t \). Hence such a factor can be ignored when considering \(\lim_{j \to \infty} \hat{F}_{N_j} \), and so we may assume \(v_k > 0 \). We may also pass to a subsequence and assume each \(F_{(j,k)} \) in (3.1) converges. Therefore, Theorem 1 implies that either \(\alpha_j(k) \to \infty \) or the sequence \(\alpha_j(k) \) becomes constant, say \(\alpha_j(k) = \alpha_k \), for large \(j \). If for all \(k \), \(\alpha_j(k) \to \alpha_k \), then (3.1) and Lemma 4 give

\[
\hat{F}_{N_j}(t) \to \hat{F}_{(\alpha_k)}(v_{\alpha_k}t) \ldots \hat{F}_{(\alpha_k)}(v_{\alpha_k}t),
\]

so that \(F \) would be a finite point mass distribution, contrary to hypothesis. Therefore, let \(k \) be such that \(\alpha_j(k) \to \infty \), and let \(M_j = M_j(k) \).

By Lemma 3 we have

\[
\hat{F}_{N_j}(t) = \hat{F}_{M_j}(t \sin \phi_j) \hat{F}_{(j,k)}(t \cos \phi_j),
\]

where \(\cos \phi_j = v_j(k) \). As \(j \to \infty \), we have \(\cos \phi_j \to \cos \phi = v_k > 0 \), and by Lemma 4, \(\hat{F}_{(j,k)}(t) \to \hat{U}(t) \). Passing to a subsequence, we have also \(\hat{F}_{M_j} \to \hat{H} \) as \(j \to \infty \).

Note that \(\omega(M_j) < k = \omega(N_j) \); so, by redefining \(N_j \) as \(M_j \), the above argument can be repeated at most \(k - 1 \) times.

Now consider the case \(\omega(N_j) \to \infty \). Assume that \(F \) has no uniform or normal convolution factors, and is not a finite point mass distribution. We will show that \(F \) either has a singular convolution factor, or is the limit of a sequence \(F_L \), with \(\omega(L_j) = O(1) \).

Since \(F \) is not normal, Theorem 2 gives the existence of a \(\delta > 0 \) such that, for infinitely many \(j \), \(\mu_\infty(N_j)(\mu_2(N_j))^{-1} > \delta \). Passing to a subsequence we may assume this for all \(j \). Lemma 3 gives

\[
(3.2) \quad \hat{F}_{N_j}(t) = \hat{F}_{M_j(1)}(t \sin \phi_j) \hat{F}_{(j,1)}(t \cos \phi_j),
\]

where \(\cos \phi_j = v_j(1) \). Inequality (2.3) implies that \(v_j(1) > \delta/4 \), so we may pass to a subsequence and assume \(\cos \phi_j \to \cos \phi = v_1 \geq \delta/4 \) as \(j \to \infty \). If \(\sin \phi = 0 \), then \(\hat{F}_{M_j(1)}(t \sin \phi_j) \to 1 \) for all \(t \). Hence, this factor could be ignored when considering \(\lim_{j \to \infty} F_{N_j} \), and \(F \) would be the limit of a sequence \(F_{L_j} \) with \(\omega(L_j) = O(1) \) (take \(L_j = (j, 1) \)). By passing to a subsequence, we may assume that each factor in (3.2) converges. Since \(F \) has no uniform convolution factor, this implies that the sequence \(\alpha_j(1) \) becomes constant, say \(\alpha_j(1) = \alpha_1 \), for large \(j \).

If we assume that \(F \) is not the limit of a sequence \(F_{L_j} \) with \(\omega(L_j) = O(1) \), then by redefining \(N_j \) as \(M_j(1) \), the above argument can be repeated indefinitely. The \(k \)th application of the argument produces a subsequence \(\hat{F}_{N_{k+1}}, \hat{F}_{N_{k+2}}, \ldots \) of the sequence
generated at the $k - 1$st stage along which

$$\hat{F}_{(j,k)}(v_{j}(k)t) \to \hat{F}_{(a_{j})}(v_{k}t).$$

Let $N_{j} = N_{j1}$ be the diagonal sequence. It follows that

$$\hat{F}_{N_{j}}(t) = \prod_{k=1}^{k_{j}} \hat{F}_{(a_{k1})}(v_{j}(k)t),$$

where for any k, $v_{j}(k) \to v_{k}$ and $a_{j}(k) \to a_{k}$ as $j \to \infty$.

Fatou’s Lemma gives

$$\sum_{k=1}^{\infty} v_{k}^{2} \leq \liminf_{j \to \infty} \sum_{k=1}^{k_{j}} v_{j}^{2}(k) = 1.$$

Hence there exists a subset $\{v_{k^{*}}\}_{k^{*}=1}^{\infty}$ of the set $\{v_{k}\}_{k=1}^{\infty}$ satisfying the conditions of Lemma 5 with respect to the distributions $F_{(a_{k^{*}})}(x)$. Let $f: \mathbb{Z}^{+} \to \mathbb{Z}^{+}$ be a nondecreasing function satisfying the following conditions:

(A) $f(j) \leq k_{j}$ and $\lim_{j \to \infty} f(j) = \infty$,

(B) $k < f(j)$ implies $a_{j}(k^{*}) = a_{k}$ and $|v_{j}(k^{*}) - v_{k^{*}}| < 2^{-f(j)}v_{k^{*}}$.

Let $M_{j} = \prod_{k < f(j)}(j, k^{*})$, and $\cos \phi_{j} = (\mu_{2}(N_{j}))^{-1}\mu_{2}(M_{j})$. Applying Lemma 3, we reorganize (3.3) as

$$\hat{F}_{N_{j}}(t) = \hat{F}_{M_{j}}(t \sin \phi_{j}) \prod_{k < f(j)} F_{(a_{k^{*}})}(v_{j}(k^{*})t).$$

By passing to a subsequence, the first factor on the right-hand side of (3.4) converges to $\hat{H}(t \sin \phi)$ for some distribution H. The proof is completed by noting that the second factor converges to

$$\prod_{k=1}^{\infty} F_{(a_{k^{*}})}(v_{k^{*}}t),$$

which by Lemma 5 is the transform of a singular distribution. \(\square\)

References

Department of Mathematics, Texas A & M University, College Station, Texas 77843

Current address: 2005B Cheshire Drive, Austin, Texas 78723