CONSTRUCTION OF A DIFFERENTIAL EQUATION $y'' + Ay = 0$
WITH SOLUTIONS HAVING THE PRESCRIBED ZEROS

LI-CHIEN SHEN

ABSTRACT. We show that an entire function $A(z)$ can be constructed so that
the differential equation $y'' + Ay = 0$ has two linearly independent solutions
having the prescribed points as their only zeros.

The main purpose of this brief note is to prove

THEOREM 1. Let $\{a_n\}$ and $\{b_n\}$ be two given sequences with no finite limit
point. If the two sequences have no points in common, that is $a_n \neq b_m$ for any n
and m ($n, m = 1, 2, 3, \ldots$), then there exists an entire function $A(z)$ such that
the differential equation $y'' + Ay = 0$ has two linearly independent solutions w_1 and w_2
whose only zeros are $\{a_n\}$ and $\{b_n\}$, respectively.

1. Preliminaries. Consider the differential equation (D.E.)
$$y'' + A(z)y = 0,$$
where A is entire. It is well known that
(i) all the solution of (1.1) are entire;
(ii) if w_1 and w_2 are two linearly independent solutions, then the Wronskian
$W(z; w_1, w_2) = w_1 w_2' - w_1' w_2$ is constant, with no loss of generality, we assume that
this constant is 1;
(iii) if z_0 is a zero of a solution, then its multiplicity is always equal to 1.

We say that an entire function f has the BL property if, for each one of its
zeros, say a, we have either $f'(a) = 1$ or $f'(a) = -1$.

Set
$$f(z) = w_1(z) \cdot w_2(z).$$
It is easy to derive that f satisfies the D.E.
$$-4Af^2 = 1 - (f')^2 + 2ff''.$$
From (1.3) we readily conclude

LEMMA 1.1. Let w_1 and w_2 be two linearly independent solutions of (1.1).
Then $f = w_1 w_2$ has the BL property.

It is an elementary exercise to show that if an entire function f has the BL
property, then the function A defined by
$$-4A(z) = (1/f^2) - (f'/f)^2 + 2(f''/f)$$
is entire. With this fact in mind, we now establish

Lemma 1.2. Let \(f \) be an entire function with the BL property. Then \(f = w_1 w_2 \), where \(w_1 \) and \(w_2 \) are some linearly independent solutions of D.E. with \(A \) defined by (1.4).

Proof. Let \(z_0 \) be a point such that \(f(z_0) \neq 0 \). Then we can choose a disk \(D = \{ z : |z - z_0| < r_0 \} \) with the property that \(f(z) \neq 0 \) for all \(z \in D \). In \(D \), we define (by choosing a branch)

\[
(1.5) \quad w_1(z) = (f)^{1/2} \exp \left(-\frac{1}{2} \int_{z_0}^{z} \frac{1}{f(s)} \, ds \right),
\]

and

\[
(1.6) \quad w_2(z) = (f)^{1/2} \exp \left(\frac{1}{2} \int_{z_0}^{z} \frac{1}{f(s)} \, ds \right).
\]

Although it is not clear at the outset that \(w_1 \) and \(w_2 \) can be analytically continued uniquely to the entire complex plane, by a straightforward substitution, however, it can be easily shown that \(w_1 \) and \(w_2 \) both satisfy the D.E. (1.1) with \(A \) defined by (1.4). Thus, from (i), we conclude that \(w_1 \) and \(w_2 \) are both entire and \(f = w_1 w_2 \).

From Lemmas 1.1 and 1.2, we conclude

Corollary 1.3. An entire function \(f \) has the BL property iff \(f \) is a product of two linearly independent solutions of D.E. (1.1).

2. **Proof of Theorem 1.** Choose an entire function \(g(z) \) so that its only zeros are \(\{a_n\} \cup \{b_n\} \) and the multiplicity of each zero is one. We also choose an entire function \(h \) such that

\[
(2.1) \quad \exp(h(z)) = \begin{cases}
-1/g'(a_n) & \text{if } z = a_n, \\
1/g'(b_n) & \text{if } z = b_n.
\end{cases}
\]

The algorithms to construct \(g \) and \(h \) are well known; however, such \(g \) and \(h \) are not unique \([1, \text{pp. } 295 \text{ and } 298]\).

Define

\[
(2.2) \quad f = g \exp(h).
\]

Then, from (2.1), \(f \) has the BL property and

\[
(2.3) \quad f'(z) = \begin{cases}
-1 & \text{if } z = a_n, \\
1 & \text{if } z = b_n.
\end{cases}
\]

Thus, from Lemma 1.2, there exists an entire function \(A \) and \(f = w_1 w_2 \), where \(w_1 \) and \(w_2 \) are two linearly independent solutions of the D.E. \(y'' + A(z)y = 0 \) defined by (1.5) and (1.6) respectively. We now show that \(w_1 \) and \(w_2 \) have the desired property.

Let

\[
(2.4) \quad F(z) = \exp \left(\int_{z_0}^{z} 1/f(s) \, ds \right).
\]
From (1.5), $F(z) = f/w_1^2$. Therefore, $F(z)$ is meromorphic. From (2.3), we see that in a small neighborhood U of $z = a_n$

\begin{equation}
1/f(z) = -1/(z - a_n) + H_n(z),
\end{equation}

where H_n is holomorphic in U. From (2.4) and (2.5),

\begin{equation}
F'/F = 1/f = -1/(z - a_n) + H_n(z) \quad (z \in U).
\end{equation}

Therefore, (2.6) implies that F has a simple pole at $z = a_n$. A similar argument shows that F has a simple zero at $z = b_n$. Since the only zeros of f are $\{a_n\} \cup \{b_n\}$, hence $\{a_n\}$ and $\{b_n\}$ are the only poles and zeros of F, respectively. This immediately implies that $F'' (= F'/f)$ has no zeros and has double poles at $\{a_n\}$. Thus $w_1 = 1/(F'')^{1/2}$ is an entire function whose zeros are precisely $\{a_n\}$. Since $w_2 = w_1 F$, the only zeros of w_2 are $\{b_n\}$. This completes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210

Current address: Department of Mathematics, University of Florida, Gainesville, Florida 32611