Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Controlled approximation and a characterization of the local approximation order


Authors: C. de Boor and R.-Q. Jia
Journal: Proc. Amer. Math. Soc. 95 (1985), 547-553
MSC: Primary 41A25; Secondary 65N30
MathSciNet review: 810161
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The local approximation order from a scale $ ({S_h})$ of approximating functions on $ {{\mathbf{R}}^m}$ is characterized in terms of the linear span (and its Fourier transform) of the finitely many compactly supported functions $ \varphi $ whose integer translates $ \varphi ( \cdot - j),j \in {z^m}$, span the space $ S = {S_1}$ from which the scale is derived. This provides a correction of similar results stated and proved, in part, by Strang and Fix.


References [Enhancements On Off] (What's this?)

  • [BH] C. de Boor and K. Höllig, 𝐵-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99–115. MR 729403, 10.1007/BF02786872
  • [DM] Wolfgang Dahmen and Charles A. Micchelli, On the approximation order from certain multivariate spline spaces, J. Austral. Math. Soc. Ser. B 26 (1984), no. 2, 233–246. MR 765640, 10.1017/S033427000000446X
  • [FS] George Fix and Gilbert Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory., Studies in Appl. Math. 48 (1969), 265–273. MR 0258297
  • [J] R.-q. Jia, A counterexample to a result of Strang and Fix concerning controlled approximation, MRC TSR# 2743, 1984.
  • [R] Walter Rudin, Function theory in the unit ball of 𝐶ⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
  • [Sc] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, A, B, Quart. Appl. Math. 4 (1946), 45-99, 112-141.
  • [St] Gilbert Strang, The finite element method and approximation theory, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR 0287723
  • [SF] G. Strang and G. Fix, A Fourier analysis of the finite element variational melhod, Constructive Aspects of Functional Analysis (G. Geymonat, ed.), C.I.M.E., 1973, pp. 793-840.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A25, 65N30

Retrieve articles in all journals with MSC: 41A25, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0810161-X
Keywords: Controlled approximation, approximation order, multivariate, box splines, finite element analysis, Fourier series
Article copyright: © Copyright 1985 American Mathematical Society