Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Classification of semicrossed products of finite-dimensional $ C\sp \ast$-algebras


Authors: Luz M. DeAlba and Justin Peters
Journal: Proc. Amer. Math. Soc. 95 (1985), 557-564
MSC: Primary 46L55; Secondary 46H20, 46L40
DOI: https://doi.org/10.1090/S0002-9939-1985-0810163-3
MathSciNet review: 810163
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{A}$, $ \mathfrak{B}$ be finite-dimensional $ {C^*}$-algebras with automorphisms $ \alpha $, $ \beta $, respectively. Then the semicrossed products $ {{\mathbf{Z}}^ + }{ \times _\alpha }\mathfrak{A}$, $ {{\mathbf{Z}}^ + }{ \times _\beta }\mathfrak{B}$ are isomorphic iff there is an isomorphism $ \psi :\mathfrak{A} \to \mathfrak{B}$ and a unitary $ U \in \mathfrak{B}$ such that $ \beta \circ \psi = (\operatorname{Ad} U)\psi \circ \alpha $.


References [Enhancements On Off] (What's this?)

  • [1] W. Arveson and K. Josephson, Operator algebras and measure preserving automorphisms, J. Funct. Anal. 2 (1969), 100-134. MR 0250081 (40:3322)
  • [2] B. R. Gelbaum, Tensor products of Banach algebras. II, Proc. Amer. Math. Soc. 25 (1970), 470-474. MR 0259601 (41:4238)
  • [3] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 0133008 (24:A2844)
  • [4] T. W. Hungerford, Algebra, Holt, Rinehart and Winston, New York, 1974. MR 0354211 (50:6693)
  • [5] M. McAsey and P. Muhly, Representations of non-self-adjoint crossed products, Preprint.
  • [6] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970. MR 0275190 (43:947)
  • [7] G. Pedersen, $ {C^*}$-algebras and their automorphism groups, Academic Press, London, 1979. MR 548006 (81e:46037)
  • [8] J. Peters, Semi-crossed products of $ {C^*}$-algebras, J. Funct. Anal. 59 (1984), 498-534. MR 769379 (86e:46063)
  • [9] C. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N.J., 1960. MR 0115101 (22:5903)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 46H20, 46L40

Retrieve articles in all journals with MSC: 46L55, 46H20, 46L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0810163-3
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society