Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Affine endomorphisms with a dense orbit


Author: Tatsuro Kasuga
Journal: Proc. Amer. Math. Soc. 95 (1985), 659-661
MSC: Primary 54H20; Secondary 22D40
DOI: https://doi.org/10.1090/S0002-9939-1985-0810181-5
MathSciNet review: 810181
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a continuous endomorphism $ f$ on a locally compact group $ X$ and $ a \in X$, we define an affine endomorphism $ {f_a}:X \to X$. We prove that if $ {f_a}$ is not one to one and if $ \left( {X,{f_a}} \right)$ has a dense orbit then $ X$ is compact.


References [Enhancements On Off] (What's this?)

  • [1] N. Aoki, Dense orbits of automorphisms and compactness of groups, Topology Appl. (to appear). MR 798440 (86j:54069)
  • [2] S. G. Dani, Dense orbits of affine automorphisms and compactness of groups, J. London Math. Soc. (2) 25 (1982), 241-245. MR 653382 (84h:22013)
  • [3] M. Dateyama and T. Kasuga, Ergodic affine maps of locally compact groups, J. Math. Soc. Japan (1985), 363-372. MR 792981 (86m:22005)
  • [4] P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, Tokyo, 1956. MR 0097489 (20:3958)
  • [5] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 0073104 (17:383b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 22D40

Retrieve articles in all journals with MSC: 54H20, 22D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0810181-5
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society