Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A note on module homotopy and chain homotopy


Authors: Keith Hardie and Peter Hilton
Journal: Proc. Amer. Math. Soc. 95 (1985), 662-664
MSC: Primary 18G35; Secondary 18E10, 55U15, 55U35
MathSciNet review: 810182
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Eckmann-Hilton (injective) homotopy category of modules over a ring $ \Lambda $ is equivalent to a certain full subcategory of the cochain homotopy category of cochain complexes of modules over $ \Lambda $.


References [Enhancements On Off] (What's this?)

  • [1] Beno Eckmann, Homotopie et dualité, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège; Masson & Cie, Paris, 1957, pp. 41–53 (French). MR 0088726
  • [2] P. J. Hilton, Homotopy theory of modules and duality, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 273–281. MR 0098126
  • [3] Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18G35, 18E10, 55U15, 55U35

Retrieve articles in all journals with MSC: 18G35, 18E10, 55U15, 55U35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0810182-7
Keywords: Chain homotopy, injective homotopy, projective homotopy, homotopy of modules, injective resolution, projective resolution, abstract homotopy, abelian category
Article copyright: © Copyright 1985 American Mathematical Society