Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The multiplicity of the Steinberg representation of $ {\rm GL}\sb n{\bf F}\sb q$ in the symmetric algebra


Authors: N. J. Kuhn and S. A. Mitchell
Journal: Proc. Amer. Math. Soc. 96 (1986), 1-6
MSC: Primary 20G40; Secondary 20G05, 20J06, 55R40, 55S10
DOI: https://doi.org/10.1090/S0002-9939-1986-0813797-6
MathSciNet review: 813797
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S(V)$ denote the symmetric algebra on the standard $ n$-dimensional representation $ V$ of $ {\text{G}}{{\text{L}}_n}{{\mathbf{F}}_q}$. The multiplicity series in $ S(V)$ for the Steinberg representation St of $ {\text{G}}{{\text{L}}_n}{{\mathbf{F}}_q}$ is determined. This series is defined by $ {F_{{\text{S}}\text{t}}}(t) = \sum\nolimits_{k = 0}^\infty {{a_k}{t^k}} $ where $ a_k$ is the multiplicity of St in the $ k$th symmetric power $ {S^k}(V)$. We show that $ {F_{{\text{S}}t}}(t) = {t^r}\prod\nolimits_{i = 1}^n {{{(1 - {t^{{q^i} - 1}})}^{ - 1}}} $, where $ r = \sum\nolimits_{i = 1}^{n - 1} {({q^i} - 1} )$. The proof involves a general property of Tits buildings and a computation of the invariants in $ S(V)$ of the parabolic subgroups of $ {\text{G}}{{\text{L}}_n}{{\mathbf{F}}_q}$.


References [Enhancements On Off] (What's this?)

  • [1] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98. MR 1500882
  • [2] H. Garland, $ p$-adic curvature and the cohomology of discrete subgroups of $ p$-adic groups, Ann. of Math. (2) 97 (1973), 375-423. MR 0320180 (47:8719)
  • [3] N. Kuhn, The modular Hecke algebra and Steinberg representation of finite Chevalley groups, J. Algebra 91 (1984), 125-141. MR 765775 (86h:20069)
  • [4] -, Chevalley group theory and the transfer in the homology of symmetric groups, Topology (to appear). MR 815479 (87g:20088)
  • [5] S. Mitchell, Finite complexes with $ A(n)$-free cohomology, Topology 24 (1985), 227-248. MR 793186 (86k:55007)
  • [6] S. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285-298. MR 710102 (85f:55005)
  • [7] H. Mui, Modular invariant theory and the cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 22 (1975), 319-369. MR 0422451 (54:10440)
  • [8] L. Solomon, The Steinberg character of a finite group with BN-pair, Theory of Finite Groups (Harvard Symposium), Benjamin, Elmsford, N.Y., 1969, pp. 213-221. MR 0246951 (40:220)
  • [9] R. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-512. MR 526968 (81a:20015)
  • [10] C. Wilkerson, A primer on the Dickson invariants, Contemporary Math., vol. 19, Amer. Math. Soc., Providence, R.I., 1983, pp. 421-434. MR 711066 (85c:55017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20G40, 20G05, 20J06, 55R40, 55S10

Retrieve articles in all journals with MSC: 20G40, 20G05, 20J06, 55R40, 55S10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0813797-6
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society