ON THE UNIVERSALITY OF WORDS FOR THE ALTERNATING GROUPS

MANFRED DROSTE

ABSTRACT. We prove the following theorem on the finite alternating groups A_n: For each pair (p, q) of nonzero integers there exists an integer $N(p, q)$ such that, for each $n > N$, any even permutation $a \in A_n$ can be written in the form $a = b^p \cdot c^q$ for some suitable elements $b, c \in A_n$. A similar result is shown to be true for the finite symmetric groups S_n provided that p or q is odd.

1. Results. Let F be a free group and $W = W(x_1, \ldots, x_n) \in F$ a word in free variables $x_1, \ldots, x_n \in F$. For a group G, we say that W is G-universal if for any $g \in G$ the equation $g = W$ can be solved in G, i.e. there are $g_1, \ldots, g_n \in G$ such that $g = W(g_1, \ldots, g_n)$.

In [14], Silberger asked whether for each pair (p, q) of nonzero integers there exists an integer $N(p, q)$ such that the word $W = W(x, y) = x^p \cdot y^q$ is universal for each finite alternating group A_n with $n > N(p, q)$. For $p = q$ this was shown to be true in [11]. Ehrenfeucht et al. [5] proved that if both p and q are not divisible by 3, then W is A_n-universal for indeed any $n \in \mathbb{N}$.

In the following, if p, q are nonzero integers, we let $m(p, q) \in \mathbb{M}$ denote the product of all primes dividing $p \cdot q$, with the convention that $m(p, q) = 1$ if $p, q \in \{-1, 1\}$. Using a result of Bertram [1], we show that Silberger’s question can in general be answered positively:

Theorem 1. Let p, q be nonzero integers and $W(x, y) = x^p \cdot y^q$. Then W is A_n-universal for any $n \geq 4m + 1$ where $m = m(p, q)$. Moreover, for any $n \geq \max\{4m + 1, 9\}$ there exists $l = l(n, m) \leq n - 2$ with the following property: For any $a \in A_n$ there are $b, c \in A_n$ such that $a = b^p \cdot c^q$, and b and c each consist only of one cycle of length l and $n - l$ fixed points; in particular, b and c are conjugate to each other in A_n.

Note that the conjugacy class of the elements b, c in Theorem 1 is independent of the special choice of $a \in A_n$.

We remark that Silberger [15] also obtained, independently, that $W = x^p \cdot y^q$ is A_n-universal for all sufficiently large n. An essential improvement of the bound $4m + 1$ is contained in a forthcoming paper by Brenner, Evans and Silberger [2].
As is well known, already Ito [9] and Ore [12] showed that any element of A_n ($n \geq 5$) can be expressed as a single commutator. This was reproved and strengthened by various authors, cf. e.g. Hsü Ch'eng-hao [8], Bertram [1]. As a first immediate consequence of Theorem 1 we obtain

Corollary 1. Let $0 \neq p \in \mathbb{Z}$, $m = m(p, p)$ and $n \geq \max\{4m + 1, 9\}$. Then there exists a conjugacy class C in A_n such that for any $a \in A_n$ there exists elements $c \in C$, $b \in A_n$ satisfying $a = [c^p, b]$.

Ehrenfeucht and Silberger [6] characterized all pairs (p, q) of integers for which $W = x^p \cdot y^q$ is universal for each finite symmetric group S_n ($n \in \mathbb{N}$). Of course, this is the case whenever both p and q are odd, since any permutation is a product of two involutions. Moreover, also for some, but not all, pairs (p, q) with p odd and q even, W is S_n-universal for each $n \in \mathbb{N}$. For instance, for any $2 \leq n \in \mathbb{N}$ the word $x^n \cdot y^n$ is not universal for S_n. This situation is different if we consider “S_n-universality for each sufficiently large $n \in \mathbb{N}$”:

Theorem 2. Let p, q be nonzero integers such that p or q is odd and $W = x^p \cdot y^q$. Then W is S_n-universal for any $n \geq \max\{4m - 4, 6\}$ where $m = m(p, q)$. Moreover, in this case, for any $a \in S_n$ there exist $b, c \in S_n$ such that $a = b^p \cdot c^q$ and b and c each consist only of precisely one nontrivial cycle (and, possibly, fixed points).

Next we consider arbitrarily long and complex words which can be written as a product of three nontrivial words with disjoint sets of variables; here a word is called nontrivial if it does not reduce identically to 1. Using results of Hall [7] and Moran [10] we show

Theorem 3. Let $W_1 = W_1(x_1, \ldots, x_p)$, $W_2 = W_2(y_1, \ldots, y_q)$, $W_3 = W_3(z_1, \ldots, z_r)$ be three nontrivial words in free pairwise different variables x_1, y_1, z_1, and $W = W(x_i, y_j, z_k) = W_1 \cdot W_2 \cdot W_3$. Then there exists an $N \in \mathbb{N}$ such that, for each $n \geq N$, A_n has the following property: For each $g \in A_n$ there are permutations $a_i, b_j, c_k \in A_n$ ($1 \leq i \leq p, 1 \leq j \leq q, 1 \leq k \leq r$) with orders all powers of 2 such that $g = W(a_i, b_j, c_k)$. In particular, W is A_n-universal.

P. Hall calls a group G W-elliptic of degree d, if any $g \in G$ is a product of at most d W-elements $W(g_1, \ldots, g_n)$ with $g_1, \ldots, g_n \in G$. (Hence W-ellipticity of degree 1 coincides, in the present notation, with universality of W.) As an immediate consequence of Theorem 3 we obtain

Corollary 2. Let $W = W(x_1, \ldots, x_m)$ be any nontrivial word. Then, for all sufficiently large $n \in \mathbb{N}$, A_n is W-elliptic of degree k for any $k \geq 3$.

Here, as well as in Theorem 3, it remains an open problem whether the number 3 may be replaced by 2 or even by 1.

If M is an infinite set, we denote by S_M^0 the group of all permutations of M with finite support and by A_M the infinite alternating group on M, i.e. the (simple) group of all elements of S_M^0 which are, if restricted to their support, even permutations. As
an obvious consequence of Theorems 1–3 we have

Corollary 3. Let M be an infinite set.
(a) If W is a word of the kind described in Theorem 1 or in Theorem 3, then W is A^*_M-universal.
(b) If W is a word of the kind described in Theorem 2, then W is S^*_M-universal.

For related results on this topic, in particular concerning universal words for infinite symmetric groups, we refer the reader to [3,4,14] and the literature cited there.

2. **Proof of our results.** As usual, we let $[x]$ denote the integer part of $x \in \mathbb{Q}$.

Proof of Theorem 1. Since $n \geq 4m + 1$, an easy calculation shows that the interval $[[\frac{3}{4}n] - 1, n - 1]$ contains at least $m + 2$ elements, in particular some multiple M of m. Again by $n \geq 4m + 1$ (and $n \geq 9$ if $m = 1$), we can choose an odd number $l \in \{M - 2, M - 1, M + 1, M + 2\}$ (and possibly $l = M$ if $m = 1$) with $[\frac{3}{4}n] < l < n - 2$. Note that l is relatively prime with m. Now if $a \in A_n$, by Bertram [1] there exist two permutations $d, e \in S_n$, each consisting of precisely one cycle of length l and $n - l$ fixed points, such that $a = d \cdot e$. Since l is odd, we have $d, e \in A_n$, and since l, p and l, q are relatively prime, respectively, d^p and e^q each have again precisely one cycle of length l and are hence conjugate to d and e. Thus $d = b^p$, $e = c^q$ for some elements $b, c \in A_n$ which each have precisely one cycle of length l and $n - l \geq 2$ fixed points. As is well known (cf. [13, 11.1.5]), b and c are conjugate to each other in A_n. Since $a = d \cdot e = b^p \cdot c^q$, the result follows.

The following proof uses similar ideas as the previous one:

Proof of Theorem 2. Assume $n \geq \max\{4m - 4, 6\}$. If $n \geq 9$, choose some multiple M of m in the interval $[[\frac{3}{4}n], n]$; if $n = 6 (7, 8)$, let $M = 4 (4, 6)$, respectively. Now let $a \in S_n$. If $a \in A_n$, choose $l \in \{M - 1, M + 1\}$ with $[\frac{3}{4}n] \leq l \leq n$. As in the proof of Theorem 1, we obtain $a = b^p \cdot c^q$ for some permutations $b, c \in S_n$ which have only one cycle of length l. Now assume $a \not\in A_n$. Choose $l \in \{M - 2, M + 1\}$ such that $[\frac{3}{4}n] < l \leq n - 1$. We distinguish between two cases:

Case I. Assume p is even (hence q odd) and $l = M + 1$, or p is odd and $l = M - 2$. In this case, by Bertram [1, Corollary 3.1] there are $d, e \in S_n$ such that $a = d \cdot e$ and $(d (e))$ consists only of one cycle of length l $(l + 1)$; note that $l, p (l + 1, q)$ are relatively prime, respectively.

Case II. Assume p is odd and $l = M + 1$, or p is even (hence q odd) and $l = M - 2$. Again by Bertram [1, Corollary 3.1], there are $d, e \in S_n$ such that $a = d \cdot e$ and $(d (e))$ consists only of one cycle of length $l + 1 (l)$; here $l + 1, p (l, q)$ are relatively prime, respectively.

In any case we can find permutations $b, c \in S_n$, each consisting only of one nontrivial cycle of length l or $l + 1$, such that $d = b^p$, $e = c^q$. Thus $a = d \cdot e = b^p \cdot c^q$ as claimed.

For the convenience of the reader, let us note two results of the literature which we will need for the proof of Theorem 3.
Lemma 2.1 (Hall [7, Lemma 7]). Let $W = W(x_1, \ldots, x_n)$ be any nontrivial word. Then there exists a finite 2-group G with elements $a_1, \ldots, a_n \in G$ such that $a = W(a_1, \ldots, a_n) \in G$ has order 2.

Lemma 2.2 (Moran [10, Theorem 0]). Let $5 \leq n \in \mathbb{N}$ and $s \in S_n$ such that $s^2 = 1$ and s has l fixed points. Then each permutation in A_n is a product of three conjugates of s if and only if the following three conditions hold:

1. $l \equiv n \pmod{2}$;
2. $rac{1}{2} \cdot (n - l) \equiv 0 \pmod{2}$;
3. $0 < l \leq \frac{1}{3}(n + 4)$ if n is even, and $0 < l \leq \frac{1}{3}(n + 2)$ if n is odd.

Now we give the

Proof of Theorem 3. By Lemma 2.1, we can find a finite 2-group G with $|G| > 4$ and elements $a_1, b_j, c_k \in G$ ($1 \leq i \leq p, 1 \leq j \leq q, 1 \leq k \leq r$) such that $a = W_1(a_i), b = W_2(b_j), c = W_3(c_k)$ all have order 2 in G. We claim that $N = 3 \cdot |G| - 5$ satisfies the assertion of the theorem. Indeed, let $n \geq N$ and $g \in A_n$. Find $m, l \in \mathbb{N}$ with $m \cdot |G| + l = n$ and $1 \leq l \leq |G|$; then l, n satisfy conditions (1)–(3) of Lemma 2.2 since 4 divides $|G|$ and by our choice of N. Hence by Lemma 2.2 there are (conjugate) involutions $x, y, z \in S_n$, each having precisely l fixed points and hence $m \cdot |G|/2$ cycles of length 2, such that $g = x \cdot y \cdot z$.

Now embed $\varphi : G \rightarrow S_G$ via Cayley's right-regular representation. Then $a_1^\varphi, b_j^\varphi, c_k^\varphi \in S_G$ all have orders powers of 2 and satisfy $a^\varphi = W_1(a_i^\varphi), b^\varphi = W_2(b_j^\varphi), c^\varphi = W_3(c_k^\varphi)$, where $a^\varphi, b^\varphi, c^\varphi$ are permutations of G each consisting of $|G|/2$ cycles of length 2. By taking m copies of (G, S_G) and an additional set with l elements, we can construct permutations $d, e, f, d_i, e_j, f_k \in S_n$ such that $d = W_1(d_i), e = W_2(e_j), f = W_3(f_k)$ each consist of $m \cdot |G|/2$ cycles of length 2 and l fixed points and d_i, e_j, f_k have the same orders as $a_1^\varphi, b_j^\varphi, c_k^\varphi$, respectively, and also l fixed points (in fact, we may perform our construction such that all these elements have identical fixed point sets), for $1 \leq i \leq p, 1 \leq j \leq q, 1 \leq k \leq r$. Now x, y, z are conjugate to d, e, f, respectively. So we obtain $x = W_1(x_i), y = W_2(y_j), z = W_3(z_k)$ for suitable conjugates $x_i, y_j, z_k \in S_n$ of d_i, e_j, f_k, respectively; thus x_i, y_j, z_k all have orders powers of 2. Hence $g = x \cdot y \cdot z = W(x_i, y_j, z_k)$, as claimed.

References

15. D. M. Silberger, For k big the word $x^m y^n$ is universal for A_k, Abstracts Amer. Math. Soc. 3 (1982), 293.

FACHBEREICH 6, MATHEMATIK, UNIVERSITÄT GHS ESSEN, 4300 ESSEN 1, FEDERAL REPUBLIC OF GERMANY