Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Modules determined by their tops and socles

Authors: K. Bongartz and S. O. Smalø
Journal: Proc. Amer. Math. Soc. 96 (1986), 34-38
MSC: Primary 16A64; Secondary 16A46
MathSciNet review: 813804
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a module in a preprojective component of the Auslander-Reiten quiver of an artin algebra is determined by its top and socle. Also other invariants determining such a module are given.

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and I. Reiten, Representation theory of Artin algebras III. Almost split sequences, Comm. Algebra 3 (1975), 239-294. MR 0379599 (52:504)
  • [2] -, Modules determined by their composition factors, Illinois J. Math. 29 (1985), 280-301. MR 784524 (86i:16032)
  • [3] K. Bongartz, Quadratic forms and finite representation type, Séminaire d'algèbre (Malliavin), Lecture Notes in Math., Springer-Verlag (to appear). MR 873092 (88d:16018)
  • [4] D. Happel, Composition factors for indecomposable modules, Proc. Amer. Math. Soc. 86 (1982), 29-31. MR 663860 (84i:16031)
  • [5] D. Happel and C. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. MR 675063 (84d:16027)
  • [6] C. Ringel, Indecomposable representations of finite dimensional algebras, Report ICM 82, PWN, Warszawa, 1983. MR 698320 (84i:16033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A64, 16A46

Retrieve articles in all journals with MSC: 16A64, 16A46

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society