ON WEIGHTED INTEGRABILITY OF TRIGONOMETRIC SERIES AND L^1-CONVERGENCE OF FOURIER SERIES

WILLIAM O. BRAY AND ČASLAV V. STANOJEVIĆ

ABSTRACT. A result concerning integrability of \(f(x)L(1/x)g(x)L(1/x) \), where \(f(x)(g(x)) \) is the pointwise limit of certain cosine (sine) series and \(L(x) \) is slowly vary in the sense of Karamata [5] is proved. Our result is an excluded case in more classical results (see [4]) and also generalizes a result of G. A. Fomin [1]. Also a result of Fomin and Telyakovskii [6] concerning \(L^1 \)-convergence of Fourier series is generalized. Both theorems make use of a generalized notion of quasi-monotone sequences.

1. Introduction. A classical problem in the theory of trigonometric series concerns sufficient conditions in terms of the coefficients \(\{a(n)\} \) for the Fourier character of cosine series

\[
\frac{a(0)}{2} + \sum_{n=1}^{\infty} a(n) \cos nx
\]

and the conjugate or sine series

\[
\sum_{n=1}^{\infty} a(n) \sin nx.
\]

All known results employ conditions which imply that the null sequence \(\{a(n)\} \) is of bounded variation (\(\sum_{n=1}^{\infty} |\Delta a(n)| < \infty \), \(\Delta a(n) = a(n) - a(n + 1) \), and \(a(n) = o(1) \) (\(n \to \infty \)). This further implies that the pointwise limit of (1.1) and (1.2) exist on \((0, \pi] \); these are denoted \(f(x) \) and \(g(x) \), respectively. Consequently, for the Fourier character of (1.1) or (1.2) it is necessary and sufficient that \(f \) or \(g \) be Lebesgue integrable on \((0, \pi] \). A recent result in this direction is the following, due to Fomin (see also [2, 3]).

Theorem 1.1. Let \(a(n) = o(1) \) (\(n \to \infty \)), and for some \(p > 1 \) let

\[
\sum_{n=1}^{\infty} \left(\frac{\sum_{k=n}^{\infty} |\Delta a(k)|^p}{n} \right)^{1/p} < \infty.
\]

Then

(i) \(f \in L^1(0, \pi] \), and

(ii) \(g \in L^1(0, \pi] \) if and only if \(\sum_{n=1}^{\infty} |a(n)|/n < \infty \).

1980 Mathematics Subject Classification. Primary 42A20, 42A32.

Key words and phrases. Integrability of trigonometric series, slowly varying functions, regularly varying sequences, \(L^1 \)-convergence of Fourier series.
Many authors have varied the point of view of the above problem by considering weighted integrability of the sum functions (see the monograph of Boas [4] for a survey). These results give criteria for the integrability of $x^{-\gamma}f(x) L(1/x)$ and $x^{-\gamma}g(x) L(1/x)$, where $\gamma > 0$ and $L(\cdot)$ is a slowly varying function in the sense of Karamata [5]. In §3 an integrability result for $f(x) L(1/x)$ and $g(x) L(1/x)$ is proved, generalizing Theorem 1.1 in the case of cosine series and giving a restricted generalization in the case of sine series.

In the final section a generalization of the following theorem due to Fomin and Telyakovskii [6] (see also [7]) is proved. For succinct formulation the nth partial sums of the Fourier series of $f \in L^1(0, \pi)$ are denoted $S_n(f) = S_n(f, x)$. Also recall (Szasz [8]) that a null sequence $\{a(n)\}$ is said to be quasi-monotone if, for some $\alpha > 0$, $a(n)/n^\alpha \downarrow$ for $n \geq n_0(\alpha)$.

Theorem 1.2. Let (1.1) be the Fourier series of $f \in L^1(0, \pi)$ with quasi-monotone coefficients. Then $\|S_n(f) - f\| = o(1) \ (n \to \infty)$ if and only if $a(n) \log n = o(1) \ (n \to \infty)$.

An analogous result holds for sine series. Both our results make use of a generalization of quasi-monotone sequence developed in §2.

2. Preliminaries. A positive measurable function $L(u)$ is said to be slowly varying in the sense of Karamata [5] if, for $\lambda > 0$,

\[
\lim_{u \to +\infty} \frac{L(\lambda u)}{L(u)} = 1.
\]

Karamata [5] proved that (2.1) holds uniformly for λ contained in a bounded closed interval. Slowly varying sequences are defined analogously: a positive sequence $\{l(n)\}$ is said to be slowly varying if, for $\lambda > 0$,

\[
\lim_{n \to +\infty} \frac{l(\lambda n)}{l(n)} = 1.
\]

The class of slowly varying functions (sequences) is denoted by $SV(\mathbb{R})$ ($SV(\mathbb{N})$).

In [9] Karamata introduced regularly varying sequences: a positive sequence $\{r(n)\}$ is said to be regularly varying if, for $\lambda > 0$ and some $\alpha > 0$,

\[
\lim_{n \to \infty} \frac{r(\lambda n)}{r(n)} = \lambda^\alpha.
\]

The class of such is denoted by $RV(\mathbb{N})$. Regularly varying sequences are characterized [9] in form as follows: $\{r(n)\) \in RV(\mathbb{N})$ if and only if $r(n) = n^\alpha l(n)$, for some $\alpha > 0$ and some $\{l(n)\) \in SV(\mathbb{N})$.

A null sequence $\{a(n)\)$ is said to be regularly varying quasi-monotone if for some $\{r(n)\) \in RV(\mathbb{N})$, $a(n)/r(n) \downarrow$ for $n \geq n_0$. The class of such sequences is denoted RQM and properly contains quasi-monotone sequences. We can now give the following generalization of the Cauchy condensation test.

Lemma 2.1. Let $\{a(n)\) \in RQM$. Then the series $\sum_{n=1}^{\infty} a(n) l(n)$ and the series $\sum_{n=0}^{\infty} 2^n a(2^n) l(2^n)$ are equiconvergent for every $\{l(n)\) \in SV(\mathbb{N})$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. For sufficiently large k, $a(k)/k^\alpha l_1(k) \downarrow$, where $\alpha > 0$ and $\{l_1(k)\} \in \text{SV}(N)$. Consequently, for sufficiently large n,

\[
\frac{a(2^n + 1)}{2^{\alpha(n+1)} l_1(2^{n+1})} \sum_{k=2^n}^{2^{n+1}-1} k^\alpha l_1(k) l(k) \leq \sum_{k=2^n}^{2^{n+1}-1} a(k) l(k) \\
\leq \frac{a(2^n)}{2^{\alpha n} l_1(2^n)} \sum_{k=2^n}^{2^{n+1}-1} k^\alpha l_1(k) l(k),
\]

and so,

\[
\frac{1}{2^\alpha} \frac{a(2^n + 1)}{l_1(2^{n+1})} \sum_{k=2^n}^{2^{n+1}-1} l_1(k) l(k) \leq \sum_{k=2^n}^{2^{n+1}-1} a(k) l(k) \\
\leq 2^\alpha \frac{a(2^n)}{l_1(2^n)} \sum_{k=2^n}^{2^{n+1}-1} l_1(k) l(k).
\]

Since $\{l_1(k)l(k)\} \in \text{SV}(N)$, the aforementioned uniform nature of (2.1) or (2.2) gives

\[
\sum_{k=2^n}^{2^{n+1}-1} l_1(k) l(k) \sim 2^n l_1(2^n) l(2^n) \quad (n \to \infty),
\]

from which the conclusion follows.

Another basic property of slowly varying functions is the asymptotic relation [5]

\[
u^\alpha \max_{u \leq s < \infty} s^{-\alpha} L(s) \sim L(u) \quad (u \to \infty),
\]

for any $\alpha > 0$. The following lemma resembles a classical Abelian theorem [10].

Lemma 2.2. Let $\{l(n)\} \in \text{SV}(N)$ and let $\{m_k\}_0^\infty$ be a positive sequence such that, for some $0 < \alpha < 1$,

\[
\sum_{k=n}^{\infty} \frac{1}{m_k^{1-\alpha}} = O \left(\frac{1}{m_n^{1-\alpha}} \right) \quad (n \to \infty).
\]

Then

\[
\sum_{k=0}^{\infty} \frac{l(m_k)}{m_k} < \infty
\]

and

\[
\sum_{k=n}^{\infty} \frac{l(m_k)}{m_k} = O \left(\frac{l(m_n)}{m_n} \right) \quad (n \to \infty).
\]

Proof. For $N > n$,

\[
\sum_{k=n}^{N} \frac{l(m_k)}{m_k} \leq \left(\sup_{k \geq n} m_k^{-\alpha} l(m_k) \right) \sum_{k=n}^{\infty} \frac{1}{m_k^{1-\alpha}}.
\]
Consequently (2.3) holds, and
\[\sum_{k=n}^{\infty} \frac{l(m_k)}{m_k} \leq A \left(m_n^a \sup_{k \geq n} \frac{a(l(m_k))}{m_k} \right) \frac{1}{m_n}, \]
where \(A \) is an absolute constant. This completes the proof.

3. Weighted integrability theorem. We prove the following theorem.

Theorem 3.1. Let \(L \in SV(\mathbb{R}) \) such that \(L(u) \to \infty \) \((u \to \infty)\), let \(a(n) = o(1) \) \((n \to \infty)\), and for some \(p > 1 \), let
\[\sum_{n=1}^{\infty} L(n) \left(\frac{\sum_{k=n}^{\infty} |\Delta a(k)|^p}{n} \right)^{1/p} < \infty. \]
Then (i) \(f(x)L(1/x) \in L^1(0, \pi) \), and
(ii) if \(\{ |a(n)| \} \in RQM \), then \(g(x)L(1/x) \in L^1(0, \pi) \) if and only if
\[\sum_{n=1}^{\infty} \frac{|a(n)|}{n} L(n) < \infty. \]

Proof. Applying Lemma 2.1 and the methods of [2], the series in (3.1) is equiconvergent with
\[\sum_{n=0}^{\infty} 2^n L(2^n) \left(\frac{1}{2^n} \sum_{k=2^n}^{2^{n+1}-1} |\Delta a(k)|^p \right)^{1/p}. \]
By Jensen's inequality, (3.1) implies \(\sum_{n=1}^{\infty} |\Delta a(n)| L(n) < \infty \), so that \(\{ a(n) \} \) is of bounded variation. Also, we may suppose \(1 < p \leq 2 \), a necessary technicality. We prove (ii); (i) is similar. Summation by parts yields the pointwise limit
\[g(x) = \sum_{n=1}^{\infty} \Delta a(n) \tilde{D}_n(x), \quad x \in (0, \pi], \]
where
\[\tilde{D}_n(x) = \frac{\cos(x/2) - \cos(n + 1/2)x}{2 \sin(x/2)} \]
is the conjugate Dirichlet kernel. Letting \(a(0) = 0 \) and
\[\tilde{D}_n(x) = -\frac{\cos(n + 1/2)x}{2 \sin(x/2)}, \]
we may write
\[g(x) = \sum_{n=0}^{\infty} \Delta a(n) \tilde{D}_n(x), \quad x \in (0, \pi]. \]
The result will be obtained by means of the following estimate: for \(N = 1, 2, \ldots \),
\[\int_{\pi/2}^{\pi} |g(x)|L\left(\frac{1}{x}\right) dx = \sum_{n=0}^{N} |a(2^n)| \int_{\pi/2}^{\pi/2+n} L\left(\frac{1}{x}\right) \frac{dx}{x} \]
\[+ O \left(\sum_{n=0}^{\infty} 2^n L(2^n) \left(\frac{1}{2^n} \sum_{k=0}^{\infty} |\Delta a(k)|^p \right)^{1/p} \right). \]
the O-term being uniform with respect to N. It follows that $g(x)L(1/x) \in L^1(0, \pi)$ if and only if

$$\sum_{n=0}^{\infty} |a(2^n)| \frac{1}{\pi} \int_{\pi 2^{-(n+1)}}^{\pi 2^{-n}} L\left(\frac{1}{x}\right) \frac{dx}{x} < \infty. $$

A change of variables gives

$$\int_{\pi 2^{-(n+1)}}^{\pi 2^{-n}} L\left(\frac{1}{x}\right) \frac{dx}{x} = \int_{\pi}^{2^n} L(2^n u) \frac{du}{u} \sim (\log 2) L(2^n) \quad (n \to \infty).$$

Thus, the series in (3.5) is equiconvergent with $\sum_{n=0}^{\infty} |a(2^n)| L(2^n)$, completing the proof by Lemma 2.1, provided we verify (3.4). For $N = 1, 2, \ldots$,

$$\int_{\pi 2^{-N+1}}^{\pi 2^{-N}} |g(x)|L\left(\frac{1}{x}\right) dx - \sum_{n=0}^{N} \int_{\pi 2^{-(n+1)}}^{\pi 2^{-n}} \left| \sum_{k=0}^{2^{n}-1} \Delta a(k) \overline{D}_k(x) \right| L\left(\frac{1}{x}\right) dx$$

Denote the right side by I_N; applying Hölder's inequality ($1/p + 1/q = 1$), followed by the Riesz [11] extension of the Hausdorff-Young theorem, one obtains

$$I_N \leq \frac{1}{2} \sum_{n=0}^{N} \left(\int_{\pi 2^{-(n+1)}}^{\pi 2^{-n}} L^p\left(\frac{1}{x}\right) \frac{dx}{x^p} \right)^{1/p} \left(\sum_{k=2^n}^{\infty} \sum_{k=2^n}^{\infty} \Delta a(k) \cos \left(k + \frac{1}{2} \right) \right)^{1/p},$$

where $\| \cdot \|_q$ is the $L^q(0, \pi)$-norm, and A_p is a constant dependent only on p. As in (3.6),

$$\int_{\pi 2^{-(n+1)}}^{\pi 2^{-n}} L^p\left(\frac{1}{x}\right) \frac{dx}{x^p} \leq B 2^{n(p-1)} L^p(2^n),$$

where B is an absolute constant. From (3.8),

$$I_N \leq A_p \sum_{n=0}^{N} 2^n L(2^n) \left(\frac{1}{2^n} \sum_{k=2^n}^{\infty} |\Delta a(k)|^p \right)^{1/p},$$

where B has been absorbed into A_p. Returning to (3.7), we have

$$\int_{\pi 2^{-N+1}}^{\pi 2^{-N}} |g(x)|L^p\left(\frac{1}{x}\right) dx = \sum_{n=0}^{N} \int_{\pi 2^{-(n+1)}}^{\pi 2^{-n}} \left| \sum_{k=0}^{2^{n}-1} \Delta a(k) \overline{D}_k(x) \right| L\left(\frac{1}{x}\right) dx + O\left(\sum_{n=0}^{\infty} 2^n L(2^n) \left(\frac{1}{2^n} \sum_{k=2^n}^{\infty} |\Delta a(k)|^p \right)^{1/p} \right),$$

uniformly in N. Denote the first term on the right side by J_N. Applying the uniform estimate

$$|\overline{D}_n(x) + 1/x| \leq A(n + 1), \quad x \in (0, \pi].$$
\(A \) being an absolute constant, we have

\[
J_N - \sum_{n=0}^{N} \int_{\pi 2^{-n+1}}^{\pi 2^{-n}} \left| \sum_{k=0}^{2^n-1} \Delta a(k) L \left(\frac{1}{x} \right) \frac{dx}{x} \right|
\]

\[
\leq A \sum_{n=0}^{N} \int_{\pi 2^{-n+1}}^{\pi 2^{-n}} \sum_{k=0}^{2^n-1} |\Delta a(k)|(k+1) L \left(\frac{1}{x} \right) dx.
\]

Again similar to (3.6),

\[
\int_{\pi 2^{-n+1}}^{\pi 2^{-n}} L \left(\frac{1}{x} \right) dx \sim \frac{L(2^n)}{2^{n+1}} = O \left(\frac{L(2^n)}{2^n} \right) \quad (n \to \infty).
\]

Consequently, denoting the right side of (3.10) by \(J_N' \) and absorbing all absolute constants into \(A \), we get

\[
J_N' \leq A \sum_{n=0}^{N} \frac{L(2^n)}{2^n} \sum_{k=0}^{2^n-1} |\Delta a(k)|(k+1)
\]

\[
\leq A \sum_{k=0}^{2^N-1} |\Delta a(k)|(k+1) \sum_{n=[\log_2(k+1)]}^{N} \frac{L(2^n)}{2^n},
\]

\([\log_2(k+1)]\) denoting the greatest integer in the base two logarithm of \(k+1 \). Appealing to Lemma 2.2 one obtains

\[
J_N' \leq A \sum_{k=0}^{2^N-1} |\Delta a(k)|(k+1) \sum_{n=[\log_2(k+1)]}^{\infty} \frac{L(2^n)}{2^n}
\]

\[
\leq A \sum_{k=0}^{2^N-1} |\Delta a(k)|(k+1) \frac{L(k+1)}{k+1}
\]

\[
\leq A \sum_{n=0}^{\infty} 2^n L(2^n) \left(\frac{1}{2^n} \sum_{k=2^n}^{\infty} |\Delta a(k)|^p \right)^{1/p}.
\]

Returning to (3.10), we get

\[
J_N = \sum_{n=0}^{N} |a(2^n)| \int_{\pi 2^{-n+1}}^{\pi 2^{-n}} L \left(\frac{1}{x} \right) \frac{dx}{x} + O \left(\sum_{n=0}^{\infty} 2^n L(2^n) \left(\frac{1}{2^n} \sum_{k=2^n}^{\infty} |\Delta a(k)|^p \right)^{1/p} \right),
\]

which concludes the proof of (3.4).

4. \(L^1 \)-convergence of Fourier series. In this section we prove the following theorem concerning \(L^1 \)-convergence of Fourier cosine series, an analogous result holds for Fourier sine series.

Theorem 4.1. Let (1.1) be the Fourier series of some \(f \in L^1(0, \pi) \) with \(\{a(n)\} \in \text{RQM} \). Then \(||S_n(f) - f|| = o(1) \quad (n \to \infty) \) if and only if \(a(n) \log n = o(1) \quad (n \to \infty) \).
Proof. Let $\sigma_n(f) = \sigma_n(f, x)$ denote the $(C, 1)$ means of the Fourier cosine series of f. Summation by parts yields

$$S_n(f, x) - \sigma_n(f, x) = \frac{1}{n+1} \sum_{k=1}^{n} k a(k) \cos kx$$

$$= \frac{1}{n+1} \sum_{k=1}^{n-1} \Delta(a(k)) \left[D_k(x) - \frac{1}{2} \right]$$

$$+ \frac{n}{n+1} a(n) \left[D_n(x) - \frac{1}{2} \right],$$

where

$$D_n(x) = \frac{1}{2} + \sum_{k=0}^{n} \cos kx = \frac{\sin(n + 1/2)x}{2 \sin(x/2)}$$

is the Dirichlet kernel. Rearranging terms gives the following useful identity:

$$S_n(f, x) - \sigma_n(f, x) = \frac{1}{n+1} \sum_{k=1}^{n-1} k \Delta a(k) D_k(x)$$

$$- \frac{n}{n+1} \sum_{k=0}^{n-1} a(k + 1) D_k(x) + a(n) D_n(x).$$

Applying the L^1-norm and using the well-known estimate

$$\|D_n\| = (2/\pi) \log n + O(1) \quad (n \to \infty),$$

we get

(4.1) $\|S_n(f) - \sigma_n(f)\| \leq \frac{2}{\pi} \cdot \frac{1}{n+1} \sum_{k=0}^{n-1} k |\Delta a(k)| \log k + \frac{2}{\pi} \cdot \frac{1}{n+1} \sum_{k=0}^{n-1} |a(k + 1)| \log k$

$$+ \frac{2}{\pi} a(n) \log n + o(1) \quad (n \to \infty).$$

For sufficiency, the hypothesis $a(n) \log n = o(1) \quad (n \to \infty)$ implies that the second and third terms on the right side are $o(1) \quad (n \to \infty)$. Hence, we must show that

(4.2) $\frac{1}{n+1} \sum_{k=1}^{n} k |\Delta a(k)| \log n = o(1) \quad (n \to \infty).$

Since $\{a(n)\} \in \text{RQM}$, for some $\alpha > 0$ and some $\{l(n)\} \in \text{SV}(N)$, we have $a(n)/n^{\alpha} l(n) \downarrow$. This implies that

$$a(n + 1) \leq (1 + \alpha/n) \frac{l(n + 1)}{l(n)} a(n),$$

without loss of generality, for all n. Consequently,

$$\Delta a(n) + \left[(1 + \frac{\alpha}{n}) \frac{l(n + 1)}{l(n)} - 1 \right] a(n) \geq 0$$

and, finally,

(4.3) $|\Delta a(n)| \leq \Delta a(n) + 2 \left[(1 + \frac{\alpha}{n}) \frac{l(n + 1)}{l(n)} \right] a(n).$
We apply (4.3) to estimate the expression in (4.2); i.e.,

\[
\frac{1}{n+1} \sum_{k=1}^{n} k|\Delta a(k)|\lg n \leq \frac{1}{n+1} \sum_{k=1}^{n} k\Delta a(k)\lg k + \frac{2}{n+1} \sum_{k=1}^{n} \left(1 + \frac{\alpha}{k}\right) \frac{l(k+1)}{l(k)} a(k)\lg k.
\]

The second term is \(o(1)\) \((n \to \infty)\) since \(\{l(n)\} \in SV(N)\) and \(a(n)\lg n = o(1)\) \((n \to \infty)\). For the first we apply summation by parts:

\[
\frac{1}{n+1} \sum_{k=1}^{n} k\Delta a(k)\lg k = \frac{1}{n+1} \sum_{k=1}^{n-1} k\log\left(1 + \frac{1}{k}\right) a(k + 1)
+ \frac{1}{n+1} \sum_{k=1}^{n-1} a(k + 1)\lg(k + 1) - \frac{n}{n+1} a(n + 1)\lg n.
\]

The first term is \(o(1)\) \((n \to \infty)\) since \(\lg(1 + 1/n) \approx 1/n\) \((n \to \infty)\); the second and third terms are \(o(1)\) \((n \to \infty)\) since \(a(n)\lg n = o(1)\) \((n \to \infty)\). This concludes the proof of sufficiency. For necessity we use the known estimate [6]

\[
\| S_n(f) - f \| \geq \sum_{k=1}^{n} \frac{a(n + k)}{k}.
\]

From the fact that \(\{a(n)\} \in RQM\) we obtain the inequality

\[
\sum_{k=1}^{n} \frac{a(n + k)}{k} = \sum_{k=1}^{n} \frac{a(n + k)}{(n + k)^\alpha l(n + k)} \cdot \frac{(n + k)^\alpha l(n + k)}{k} \\
\geq \frac{a(2n)}{(2n)^\alpha l(2n)} \sum_{k=1}^{n} \frac{(n + k)^\alpha l(n + k)}{k} \\
\geq \left(\frac{n + 1}{2n}\right)^\alpha a(2n) \frac{l(2n)}{l(2n)} \sum_{k=1}^{n} \frac{l(n + k)}{k}.
\]

The asymptotic relation \(l(k) \sim k^\beta\) \([\sup_{m \geq k} m^{-\beta} l(m)]\) \((k \to \infty)\), gives for large \(n\),

\[
\sum_{k=n+1}^{2n} \frac{l(k)}{k - n} \approx \sum_{k=n+1}^{2n} \frac{k^\beta \sup_{m \geq k} m^{-\beta} l(m)}{k - n} \\
\approx \left[\sup_{m \geq 2n} m^{-\beta} l(m) \right] \sum_{k=n+1}^{2n} \frac{k^\beta}{k - n} \geq (n + 1)^\beta \left[\sup_{m \geq 2n} m^{-\beta} l(m) \right] \sum_{k=1}^{n} \frac{1}{k} \\
= \left(\frac{n + 1}{2n}\right)^\beta (2n)^\beta \left[\sup_{m \geq 2n} m^{-\beta} l(m) \right] \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{2^\beta} l(2n)\lg n.
\]

Returning to (4.4) concludes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MAINE AT ORONO, ORONO, MAINE 04469

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI AT ROLLA, ROLLA, MISSOURI 65401