An error estimate for continued fractions
Author:
John Gill
Journal:
Proc. Amer. Math. Soc. 96 (1986), 71-74
MSC:
Primary 40A15; Secondary 30B70
DOI:
https://doi.org/10.1090/S0002-9939-1986-0813813-1
MathSciNet review:
813813
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: New and improved truncation error bounds are derived for continued fractions , where
. The geometrical approach is somewhat unusual in that it involves both isometric circles and fixed points of bilinear transformations.
- [1] L. R. Ford, Automorphic functions, McGraw-Hill, New York, 1929, pp. 23-30.
- [2]
J. Gill, Converging factors for continued fractions
, Proc. Amer. Math. Soc. 84 (1982), 85-88. MR 633283 (82k:30006)
- [3]
-, Truncation error analysis for continued fractions
, where
, Lecture Notes in Math., vol. 932, Springer-Verlag, Berlin and New York, 1982, pp. 71-73.
- [4] -, Modifying factors for sequence of linear fractional transformations, Norske Vid. Selsk. Skr. (Trondheim) 3 (1978), 1-7.
- [5] W. Jones and R. Snell, Truncation error bounds for continued fractions, SIAM J. Numer. Anal. 6 (1969), 210-221. MR 0247737 (40:1000)
- [6]
W. Thron and W. Waadeland, Accelerating convergence of limit periodic continued fractions
, Numer. Math. 34 (1980), 155-170. MR 566679 (81e:30008)
- [7] -, Truncation error bounds for limit periodic continued fractions, Math. Comp. 40 (1983), 589-597. MR 689475 (84f:30009)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40A15, 30B70
Retrieve articles in all journals with MSC: 40A15, 30B70
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1986-0813813-1
Article copyright:
© Copyright 1986
American Mathematical Society